Archives of Gynecology and Obstetrics

, Volume 289, Issue 6, pp 1281–1286

Detection of E6-AP as a potential therapeutic target in cervical specimen of HPV-infected women

  • Peter Hillemanns
  • Matthias Jentschke
  • Thomas G. Evans
  • Philipp Soergel
  • Ralf Hass
Gynecologic Oncology



Silencing of HPV oncogenes or their human host client proteins using topically applied small interfering RNA (siRNA) may be an attractive nonsurgical strategy for CIN treatment. An exploratory clinical investigation was designed to evaluate E6-AP mRNA expression levels in different stages of cervical intraepithelial neoplasia and during the menstrual cycle.


In 38 premenopausal women aged 18–45 years referred to colposcopy clinic, analysis of serum hormones, cervical smears for cytology and HPV DNA, cervical biopsy, p16 immunohistochemistry and E6-AP mRNA expression levels in cervical smears and biopsies were performed. The intra-subject variability in E6-AP mRNA expression of vaginal smears was assessed and compared to cervical biopsy specimens.


RNA of sufficient quantity and quality was available for E6-AP expression analysis from 97 % of the collected cervical smears and from 56 % of the collected biopsy samples. The normalized RNA levels from cervical smears were approximately tenfold higher compared to biopsies. There was little influence by the phase of the menstrual cycle or by CIN stage. Real-time PCR showed that the expression level of E6-AP is in a range (<28 Ct) that would allow for detection of at least 100-fold modulation by a therapeutic agent (based on an assay LOD of Ct = 36).


Our findings suggest a potential therapeutic approach using E6-AP siRNA as a specific molecular target in cervical intraepithelial neoplasia.


Cervical cancer CIN HPV E6-AP 


  1. 1.
    Arbyn M, Kyrgiou M, Simoens C, Raifu AO, Koliopoulos G, Martin-Hirsch P et al (2008) Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: meta-analysis. BMJ(Clinical research ed) 337:a1284CrossRefGoogle Scholar
  2. 2.
    Brun JL, Dalstein V, Leveque J, Mathevet P, Raulic P, Baldauf JJ et al (2011) Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol 204(2):169e1–169e8CrossRefGoogle Scholar
  3. 3.
    Einstein MH, Kadish AS, Burk RD, Kim MY, Wadler S, Streicher H et al (2007) Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol 106(3):453–460PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Young JL, Jazaeri AA, Darus CJ, Modesitt SC (2008) Cyclooxygenase-2 in cervical neoplasia: a review. Gynecol Oncol 109(1):140–145PubMedCrossRefGoogle Scholar
  5. 5.
    Hillemanns P, Wang X, Hertel H, Andikyan V, Hillemanns M, Stepp H et al (2008) Pharmacokinetics and selectivity of porphyrin synthesis after topical application of hexaminolevulinate in patients with cervical intraepithelial neoplasia. Am J Obstet Gynecol 198(3):300e1–300e7CrossRefGoogle Scholar
  6. 6.
    Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2(5):342–350PubMedCrossRefGoogle Scholar
  7. 7.
    Schiffman M, Wentzensen N, Wacholder S, Kinney W, Gage JC, Castle PE (2011) Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer Inst 103(5):368–383PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8:3905–3910PubMedCentralPubMedGoogle Scholar
  9. 9.
    Munger K, Phelps WC, Bubb V, Howley PH, Schlegel R (1989) The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63:4417–4421PubMedCentralPubMedGoogle Scholar
  10. 10.
    Peralta-Zaragoza O, Bermudez-Morales VH, Madrid-Marina V (2010) RNA interference: biogenesis molecular mechanisms and its applications in cervical cancer. Rev Invest Clin 62(1):63–80PubMedGoogle Scholar
  11. 11.
    Chen XZ, Zhu KJ, Xu Y, Tang XY, Cai XZ, Zhang X et al (2010) RNA interference silences the human papillomavirus 6b/11 early gene E7 in vitro and in vivo. Clin Exp Dermatol 35(5):509–515PubMedCrossRefGoogle Scholar
  12. 12.
    Hengstermann A, D’Silva MA, Kuballa P, Butz K, Hoppe-Seyler F, Scheffner M (2005) Growth suppression induced by downregulation of E6-AP expression in human papillomavirus-positive cancer cell lines depends on p53. J Virol 79(14):9296–9300PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Tomaic V, Pim D, Banks L (2009) The stability of the human papillomavirus E6 oncoprotein is E6AP dependent. Virology 393(1):7–10PubMedCrossRefGoogle Scholar
  14. 14.
    Shai A, Pitot HC, Lambert PF (2010) E6-associated protein is required for human papillomavirus type 16 E6 to cause cervical cancer in mice. Cancer Res 70(12):5064–5073PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Opalinska JB, Gewirtz AM (2002) Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 1(7):503–514PubMedCrossRefGoogle Scholar
  16. 16.
    Kim B, Tang Q, Biswas PS, Xu J, Schiffelers RM, Xie FY et al (2004) Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol 165(6):2177–2185PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Mizui T, Yamashina S, Tanida I, Takei Y, Ueno T, Sakamoto N et al (2010) Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy. J Gastroenterol 45(2):195–203PubMedCrossRefGoogle Scholar
  18. 18.
    Jonson AL, Rogers LM, Ramakrishnan S, Downs LS Jr (2008) Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention in a mouse model of cervical cancer. Gynecol Oncol 111(2):356–364PubMedCrossRefGoogle Scholar
  19. 19.
    Jung HS, Erkin OC, Kwon MJ, Kim SH, Jung JI, Oh YK et al (2011) The synergistic therapeutic effect of cisplatin with Human papillomavirus E6/E7 short interfering RNA on cervical cancer cell lines in vitro and in vivo. Int J Cancer 130(8):1925–1936PubMedCrossRefGoogle Scholar
  20. 20.
    Yamato K, Egawa N, Endo S, Ui-Tei K, Yamada T, Saigo K et al (2011) Enhanced specificity of HPV16 E6E7 siRNA by RNA-DNA chimera modification. Cancer Gene Ther 18(8):587–597PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Hillemanns
    • 1
  • Matthias Jentschke
    • 1
  • Thomas G. Evans
    • 2
  • Philipp Soergel
    • 1
  • Ralf Hass
    • 1
  1. 1.Department of Obstetrics and GynecologyMedical University HannoverHannoverGermany
  2. 2.Translational Medicine/Infectious DiseasesNovartis Institutes for Biomedical Research, Inc.CambridgeUSA

Personalised recommendations