Archives of Gynecology and Obstetrics

, Volume 287, Issue 1, pp 19–24 | Cite as

Trace elements and oxidative stress in hypertensive disorders of pregnancy

  • Vanja FenzlEmail author
  • Zlata Flegar-Meštrić
  • Sonja Perkov
  • Luka Andrišić
  • Franz Tatzber
  • Neven Žarković
  • Željko Duić
Maternal-Fetal Medicine



Due to increased metabolic requests, pregnancy can be considered as metabolic stress, especially if associated with oxidative stress triggered by disbalance of pro/antioxidants. The aim of the study was to determine serum concentrations of the trace elements iron (Fe), zinc (Zn) and copper (Cu) important in growth regulation and pro/anti-oxidant homeostasis, in relation to the total serum oxidant capacity (TOC) and total serum antioxidant capacity (TAC) in pregnant women with preeclampsia (n = 30) or with gestational hypertension (n = 30) and in healthy pregnant women (n = 37) and non-pregnant women (n = 30) as control groups expecting common differences between all pregnant women and controls and between preeclampsia and the other pregnancies indicating specific disbalance of the oxidative stress and analyzed trace elements.


Serum Fe was determined by spectrophotometric method, Cu and Zn were determined by atomic absorption spectrometry, TOC was determined by Enzymatic ANTIOX-CAP assay and TAC by Peroxide-activity assay.


Serum Cu and TOC were significantly higher while Zn was lower in all pregnant groups regardless of hypertensive disorders. Serum Fe and TAC concentrations were found to be significantly higher in pregnant women with preeclampsia compared to pregnant controls.


Increase of TOC in all pregnant women our study points to latent oxidative stress in pregnancy. Fe might have a role in etiopathogenesis of preeclampsia while the increase of TAC in the very beginning of preeclampsia might represent a stressdefence mechanism of the body. It has still to be revealed whether significantly higher serum Fe levels are associated with preeclampsia as a cause or as a consequence of this disorder.


Hypertensive disorders of pregnancy Total oxidant capacity Total antioxidant capacity Iron Copper Zinc 


Conflict of interest



  1. 1.
    ACOG Practice Bulletin (2001) Chronic hypertension in pregnancy. ACOG Committee on Practice Bulletins. Obstet Gynecol. 98(1):suppl 177–185Google Scholar
  2. 2.
    (2000) Report of the national high blood pressure education program working group on high blood pressure in pregnancy. Am J Obstet Gynecol 183(1):S1–S22Google Scholar
  3. 3.
    Redman CW, Sacks GP, Sargent IL (1999) Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 180(2 Pt 1):499–506PubMedCrossRefGoogle Scholar
  4. 4.
    Rayman MP, Barlis J, Evans RW, Redman CW, King LJ (2002) Abnormal iron parameters in the pregnancy syndrome preeclampsia. Am J Obstet Gynecol 187(2):412–418PubMedCrossRefGoogle Scholar
  5. 5.
    Roberts JM, Gammill HS (2005) Preeclampsia: recent insights. Hypertension 46(6):1243–1249PubMedCrossRefGoogle Scholar
  6. 6.
    Friedman SA, Taylor RN, Roberts JM (1991) Pathophysiology of preeclampsia. Clin Perinatol 18(4):661–682PubMedGoogle Scholar
  7. 7.
    Redman CW, Sargent IL (2009) Placental stress and pre-eclampsia: a revised view. Placenta 30(Suppl A):S38–S42PubMedCrossRefGoogle Scholar
  8. 8.
    Burton GJ, Jauniaux E (2004) Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig 11(6):342–352PubMedCrossRefGoogle Scholar
  9. 9.
    Jauniaux E, Poston L, Burton GJ (2006) Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Update 12(6):747–755PubMedCrossRefGoogle Scholar
  10. 10.
    Hung TH, Burton GJ (2006) Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol 45(3):189–200PubMedCrossRefGoogle Scholar
  11. 11.
    Mertz W (1981) The essential trace elements. Science 213(4514):1332–1338PubMedCrossRefGoogle Scholar
  12. 12.
    Ulmer DD (1977) Trace elements. N Engl J Med 297(6):318–321PubMedCrossRefGoogle Scholar
  13. 13.
    Black RE (2001) Micronutrients in pregnancy. Br J Nutr 85(Suppl 2):S193–S197PubMedCrossRefGoogle Scholar
  14. 14.
    Hayden MR, Tyagi SC (2004) Uric acid: a new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: the urate redox shuttle. Nutr Metab (Lond) 1(1):10CrossRefGoogle Scholar
  15. 15.
    Pathak P, Kapil U (2004) Role of trace elements zinc, copper and magnesium during pregnancy and its outcome. Indian J Pediatr 71(11):1003–1005PubMedCrossRefGoogle Scholar
  16. 16.
    Kontic-Vucinic O, Sulovic N, Radunovic N (2006) Micronutrients in women’s reproductive health: II. Minerals and trace elements. Int J Fertil Womens Med 51(3):116–124PubMedGoogle Scholar
  17. 17.
    Flegar-Mestric Z, Nazor A, Perkov S, Surina B, Kardum-Paro MM, Siftar Z et al (2010) Accreditation of medical laboratories in Croatia—experiences of the Institute of Clinical Chemistry, University Hospital “Merkur”, Zagreb. Coll Antropol 34(1):181–186PubMedGoogle Scholar
  18. 18.
    (1993) Guide to the expression of uncertainty in measurement.ISO, AmsterdamGoogle Scholar
  19. 19.
    Resch U, Tatzber F, Budinsky A, Sinzinger H (2006) Reduction of oxidative stress and modulation of autoantibodies against modified low-density lipoprotein after rosuvastatin therapy. Br J Clin Pharmacol 61(3):262–274PubMedCrossRefGoogle Scholar
  20. 20.
    Tatzber F, Griebenow S, Wonisch W, Winkler R (2003) Dual method for the determination of peroxidase activity and total peroxides-iodide leads to a significant increase of peroxidase activity in human sera. Anal Biochem 316(2):147–153PubMedCrossRefGoogle Scholar
  21. 21.
    Raijmakers MT, Dechend R, Poston L (2004) Oxidative stress and preeclampsia: rationale for antioxidant clinical trials. Hypertension 44(4):374–380PubMedCrossRefGoogle Scholar
  22. 22.
    Siddiqui IA, Jaleel A, Tamimi W, Al Kadri HM (2010) Role of oxidative stress in the pathogenesis of preeclampsia. Arch Gynecol Obstet 282(5):469–474PubMedCrossRefGoogle Scholar
  23. 23.
    Borzychowski AM, Sargent IL, Redman CW (2006) Inflammation and pre-eclampsia. Semin Fetal Neonatal Med 11(5):309–316PubMedCrossRefGoogle Scholar
  24. 24.
    Noris M, Perico N, Remuzzi G (2005) Mechanisms of disease: pre-eclampsia. Nat Clin Pract Nephrol 1(2):98–114 quiz 20PubMedCrossRefGoogle Scholar
  25. 25.
    Gveric-Ahmetasevic S, Sunjic SB, Skala H, Andrisic L, Stroser M, Zarkovic K et al (2009) Oxidative stress in small-for-gestational age (SGA) term newborns and their mothers. Free Radic Res 43(4):376–384PubMedCrossRefGoogle Scholar
  26. 26.
    Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29(11):1106–1114PubMedCrossRefGoogle Scholar
  27. 27.
    Alebic-Juretic A, Frkovic A (2005) Plasma copper concentrations in pathological pregnancies. J Trace Elem Med Biol 19(2–3):191–194PubMedCrossRefGoogle Scholar
  28. 28.
    Ladipo OA (2000) Nutrition in pregnancy: mineral and vitamin supplements. Am J Clin Nutr 72(1 Suppl):280S–290SPubMedGoogle Scholar
  29. 29.
    Kumru S, Aydin S, Simsek M, Sahin K, Yaman M, Ay G (2003) Comparison of serum copper, zinc, calcium, and magnesium levels in preeclamptic and healthy pregnant women. Biol Trace Elem Res 94(2):105–112PubMedCrossRefGoogle Scholar
  30. 30.
    Ilhan N, Simsek M (2002) The changes of trace elements, malondialdehyde levels and superoxide dismutase activities in pregnancy with or without preeclampsia. Clin Biochem 35(5):393–397PubMedCrossRefGoogle Scholar
  31. 31.
    Serdar Z, Gur E, Develioglu O (2006) Serum iron and copper status and oxidative stress in severe and mild preeclampsia. Cell Biochem Funct 24(3):209–215PubMedCrossRefGoogle Scholar
  32. 32.
    Schumann K, Ettle T, Szegner B, Elsenhans B, Solomons NW (2007) On risks and benefits of iron supplementation recommendations for iron intake revisited. J Trace Elem Med Biol 21(3):147–168PubMedCrossRefGoogle Scholar
  33. 33.
    Puntarulo S (2005) Iron, oxidative stress and human health. Mol Aspects Med 26(4–5):299–312PubMedCrossRefGoogle Scholar
  34. 34.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95PubMedGoogle Scholar
  35. 35.
    Fontecave M, Pierre JL (1993) Iron: metabolism, toxicity and therapy. Biochimie 75(9):767–773PubMedCrossRefGoogle Scholar
  36. 36.
    Bhatla N, Kaul N, Lal N, Kriplani A, Agarwal N, Saxena R et al (2009) Comparison of effect of daily versus weekly iron supplementation during pregnancy on lipid peroxidation. J Obstet Gynaecol Res 35(3):438–445PubMedCrossRefGoogle Scholar
  37. 37.
    Lachili B, Hininger I, Faure H, Arnaud J, Richard MJ, Favier A et al (2001) Increased lipid peroxidation in pregnant women after iron and vitamin C supplementation. Biol Trace Elem Res 83(2):103–110PubMedCrossRefGoogle Scholar
  38. 38.
    Knutson MD, Walter PB, Ames BN, Viteri FE (2000) Both iron deficiency and daily iron supplements increase lipid peroxidation in rats. J Nutr 130(3):621–628PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vanja Fenzl
    • 1
    • 2
    • 8
    Email author
  • Zlata Flegar-Meštrić
    • 3
    • 4
  • Sonja Perkov
    • 3
  • Luka Andrišić
    • 5
  • Franz Tatzber
    • 6
  • Neven Žarković
    • 5
  • Željko Duić
    • 1
    • 7
  1. 1.Department of Gynecology and ObstetricsUniversity Hospital “Merkur”ZagrebCroatia
  2. 2.University of Applied Health StudiesZagrebCroatia
  3. 3.Institute of Clinical ChemistryUniversity Hospital “Merkur”ZagrebCroatia
  4. 4.Faculty of Pharmacy and BiochemistryZagreb UniversityZagrebCroatia
  5. 5.Division of Molecular MedicineRuđer Bošković InstituteZagrebCroatia
  6. 6.Department of Biochemical EngineeringUniversity of Applied Sciences, Technikum WienViennaAustria
  7. 7.Faculty of MedicineRijeka UniversityRijekaCroatia
  8. 8.ZagrebCroatia

Personalised recommendations