Archives of Gynecology and Obstetrics

, Volume 286, Issue 3, pp 653–659 | Cite as

Analysis of mitochondrial DNA sequence variants in patients with polycystic ovary syndrome

  • Guangchao Zhuo
  • Yu Ding
  • Guofang Feng
  • Lin Yu
  • Yan Jiang
General Gynecology



To understand the role of mitochondrial DNA (mtDNA) mutations in patients with polycystic ovary syndrome (PCOS).


A total of 57 women with PCOS and 38 controls were recruited in this study, mutational analysis of mitochondrial genome was performed using polymerase chain reaction and under a direct sequence analysis.


Sequence characterization of mitochondrial genome showed a distinct set of polymorphisms mainly focused on oxidative phosphorylation (OXPHOS) complex, in addition, six variants in mitochondrial tRNA genes, including tRNAGln, tRNACys, tRNAAsp, tRNALys, tRNAArg and tRNAGlu were also identified in PCOS patients. Interestingly, these variants occurred at highly conserved nucleotides of corresponding tRNAs, which are important for tRNA stability level and biochemical function.


Mutations in mtDNA, especially the OXPHOS complex and tRNAs, may be associated with PCOS patients, thus, our results shed new insight into the pathogenesis of PCOS.


PCOS Mitochondrial DNA mutation tRNA gene OXPHOS 



We thanked the patients for participating in this study. We are grateful to Dr. Hong Chen for critical reading of this manuscript. This work was supported by the grant from Nature Science Foundation from Zhejiang Province (No. Y204327).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO (2004) The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 89:2745–2749PubMedCrossRefGoogle Scholar
  2. 2.
    Christakou C, Diamanti E (2008) Role of androgen excess on metabolic aberrations and cardiovascular risk in women with polycystic ovary syndrome. Womens health 6:583–594Google Scholar
  3. 3.
    Rajendran S, Willoughby SR, Chan WP, Liberts EA, Heresztyn T, Saha M et al (2009) Polycystic ovary syndrome is associated with severe platelet and endothelial dysfunction in both obese and lean subjects. Athrtoslerosis 204:509–514CrossRefGoogle Scholar
  4. 4.
    Mukherjee S, Maitra A (2010) Molecular & genetics factors contributing to insulin resistance in polycystic ovary syndrome. India J Med Res 131:743–760Google Scholar
  5. 5.
    Wallace DC (2010) Mitochondrial DNA mutations in diseases and aging. Environ Mol Mutagen 51:440–450PubMedGoogle Scholar
  6. 6.
    Victor VM, Rocha M, Bañuls C, Sanchez-Serrano M, Sola E, Gomez M et al (2009) Mitochondrial complex I impairment in leukocytes from polycystic ovary syndrome patients with insulin resistance. J Clin Endocrinol Metab 94:3505–3512PubMedCrossRefGoogle Scholar
  7. 7.
    Skov V, Glintborg D, Knudsen S, Tan Q, Jensen T, Kruse TA et al (2008) Pioglitazone enhances mitochondrial biogenesis and ribosomal protein biosynthesis in skeletal muscle in polycystic ovary syndrome. PLoS One 6:e2466CrossRefGoogle Scholar
  8. 8.
    Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndromeGoogle Scholar
  9. 9.
    Sambrook J, Fritschi EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  10. 10.
    Rieder MJ, Taylor SL, Tobe VO, Nickerson DA (1998) Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res 26:967–973PubMedCrossRefGoogle Scholar
  11. 11.
    Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W et al (2009) Task force on the phenotype of the polycystic ovary syndrome of the androgen excess and PCOS society. The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 91:456–488PubMedCrossRefGoogle Scholar
  12. 12.
    Boomsma CM, Eijkemans MJ, Hughes EG, Visser GH, Fauser BC, Macklon NS (2006) A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update 12:673–683PubMedCrossRefGoogle Scholar
  13. 13.
    Norman RJ, Dewailly D, Legro RS, Hickey TE (2007) Polycystic ovary syndrome. Lancet 370:685–697PubMedCrossRefGoogle Scholar
  14. 14.
    Bandelt HJ, Salas A, Taylor RW, Yao YG (2009) Exaggerated status of “novel” and “pathogenic” mtDNA sequence variants due to inadequate database searches. Hum Mutat 30:191–196PubMedCrossRefGoogle Scholar
  15. 15.
    Matsuura N, Suzuki S, Yokota Y, Kazahari K, Kazahari M, Toyota T et al (1999) The prevalence of mitochondrial gene mutations in childhood diabetes in Japan. J Pediatr Endocrinol Metab 12:27–30PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang M, Zhou X, Li C, Zhao F, Zhang J, Yuan M et al (2010) Mitochondrial haplogroup M9a specific variant ND1 T3394C may have a modifying role in the phenotypic expression of the LHON-associated ND4 G11778A mutation. Mol Genet Metab 101:192–199PubMedCrossRefGoogle Scholar
  17. 17.
    Zhuo G, Feng G, Leng J, Yu L, Jiang Y (2010) A 9-bp deletion homoplasmy in women with polycystic ovary syndrome revealed by mitochondrial genome-mutation screen. Biochem Genet 48:157–163PubMedCrossRefGoogle Scholar
  18. 18.
    Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180PubMedCrossRefGoogle Scholar
  19. 19.
    Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisà E, Saccone C (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516PubMedCrossRefGoogle Scholar
  20. 20.
    Roe BA, Ma DP, Wilson DK, Wong JF (1985) The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem 260:9759–9774PubMedGoogle Scholar
  21. 21.
    Huoponen K, Lamminen T, Juvonen V, Aula P, Nikoskelainen E, Savontaus ML (1993) The spectrum of mitochondrial DNA mutations in families with Leber hereditary optic neuropathy. Hum Genet 92:379–384PubMedCrossRefGoogle Scholar
  22. 22.
    Cai W, Fu Q, Zhou X, Qu J, Tong Y, Guan MX (2008) Mitochondrial variants may influence the phenotypic manifestation of Leber’s hereditary optic neuropathy associated ND4 G11778A mutation. J Genet Genomics 35:649–655PubMedCrossRefGoogle Scholar
  23. 23.
    Ji Y, Zhang AM, Jia X, Zhang YP, Xiao X, Li S et al (2008) Mitochondrial DNA haplogroups M7b1’2 and M8a affect clinical expression of leber hereditary optic neuropathy in Chinese families with the m.11778G– > a mutation. Am J Hum Genet 83:760–768PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu HY, Wang SW, Liu L, Chen R, Wang L, Gong XL et al (2009) Genetic variants in mitochondrial tRNA genes are associated with essential hypertension in a Chinese Han population. Clin Chim Acta 410:64–69PubMedCrossRefGoogle Scholar
  25. 25.
    Florentz C, Sohm B, Tryoen-Tóth P, Pütz J, Sissler M (2003) Human mitochondrial tRNAs in health and disease. Cell Mol Life Sci 60:1356–1375PubMedCrossRefGoogle Scholar
  26. 26.
    Shtilbans A, El-Schahawi M, Malkin E, Shanske S, Musumeci O, DiMauro S (1999) A novel mutation in the mitochondrial DNA transfer ribonucleic acid Asp gene in a child with myoclonic epilepsy and psychomotor regression. J Chil Neurol 14:610–613CrossRefGoogle Scholar
  27. 27.
    Najarian D, Shu HH, Martin NC (1986) Sequence and expression of four mutant aspartic acid tRNA genes from the mitochondria of Saccharomyces cerevisiae. Nucleic Acids Res 14:9561–9578PubMedCrossRefGoogle Scholar
  28. 28.
    Ruiz-Pesini E, Wallace DC (2006) Evidence for adaptive selection acting on the tRNA and rRNA genes of human mitochondrial DNA. Hum Mutat 27:1072–1081PubMedCrossRefGoogle Scholar
  29. 29.
    Jaksch M, Kleinle S, Scharfe C, Klopstock T, Pongratz D, Müller-Höcker J et al (2001) Frequency of mitochondrial transfer RNA mutations and deletions in 225 patients presenting with respiratory chain deficiencies. J Med Genet 38:665–673PubMedCrossRefGoogle Scholar
  30. 30.
    Lu J, Qian Y, Li Z, Yang A, Zhu Y, Li R et al (2010) Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12S rRNA 1555A > G mutation. Mitochondrion 10:69–81PubMedCrossRefGoogle Scholar
  31. 31.
    Young WY, Zhao L, Qian Y, Li R, Chen J, Yuan H et al (2006) Variants in mitochondrial tRNAGlu, tRNAArg, and tRNAThr may influence the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in three Han Chinese families with hearing loss. Am J Med Genet A 140:2188–2197PubMedGoogle Scholar
  32. 32.
    Björk GR (1995) tRNA: structure, biosynthesis and function. In: Söll D, RajBhandary UL (eds) tRNA: structure, biosynthesis and function. ASM Press, Washington DC, pp 165–206Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Guangchao Zhuo
    • 1
    • 3
  • Yu Ding
    • 1
    • 3
  • Guofang Feng
    • 2
    • 3
  • Lin Yu
    • 2
    • 3
  • Yan Jiang
    • 4
  1. 1.Central LaboratoryHangzhou First People’s HospitalHangzhouChina
  2. 2.Department of Gynecology and ObstetricsHangzhou First People’s HospitalHangzhouChina
  3. 3.The Affiliated Hangzhou Hospital, Nanjing Medical UniversityNanjingChina
  4. 4.Department of Infectious DiseasesSir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhouChina

Personalised recommendations