Archives of Gynecology and Obstetrics

, Volume 285, Issue 4, pp 891–899 | Cite as

Relationships among maternal nutrient intake and placental biomarkers during the 1st trimester in low-income women

  • Eileen R. Fowles
  • Lorraine O. Walker
  • C. Nathan Marti
  • Roberta Jeanne Ruiz
  • Joel Wommack
  • Miranda Bryant
  • SungHun Kim
  • Gayle M. Timmerman
Maternal-Fetal Medicine



Pre-eclampsia is a multi-system disorder caused by inadequate placentation in early pregnancy; however, little is known about the influence of nutrient intake on placental development during the crucial 1st trimester. The objective of this study was to examine the relationships between nutrient intake and the raw values and ratios of angiogenic [placental growth factor (PlGF)] and antiangiogenic [soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng)] placental biomarkers in the 1st trimester.


A cross-sectional study of low-income, pregnant women (n = 118). Average nutrient intake was calculated from three 24-h dietary recalls. Biomarker values were adjusted for gestational age and nutrients were adjusted for energy.


The angiogenic to antiangiogenic ratio [PlGF/(sFlt-1 × sEng)] was positively related to intake of vitamin D (r = 0.24), vitamin B2 (r = 0.25), B12 (r = 0.20), dietary folate equivalents (r = 0.19), iron (r = 0.19), and zinc (r = 0.19) and negatively related to transfats (r = −0.24). Principal component analysis revealed that a vitamin/mineral factor [t (112) = 2.58, p = 0.011] and transfats factor [t (112) = −2.03, p = 0.045] were significant predictors of the PlGF/(sFlt-1 × sEng) ratio. The vitamin and mineral factor was a significant predictor of sFlt-1 [t (122) = 2.29, p = 0.024].


Expression of placental biomarkers in the early weeks of pregnancy may be influenced by intake of nutrients. Understanding the influence of maternal nutrient intake and placental development in the 1st trimester may provide the opportunity to avert the development or blunt the severity of preeclampsia.


Preeclampsia Vitamin D Transfats Pregnancy Low income Placental growth factor Soluble fms-like tyrosine kinase-1 Soluble endoglin 


  1. 1.
    Funai E, Friedlander Y, Paltiel O, Tiram E, Xue X, Dutsch L, Harlap S (2005) Long-term mortality after preeclampsia. Epidemiology 16:206–215PubMedCrossRefGoogle Scholar
  2. 2.
    Magnussen E, Vatten L, Smithy G, Romundstad P (2009) Hypertensive disorders in pregnancy and subsequently measured cardiovascular risk factors. Obstet Gynecol 114:961–970PubMedCrossRefGoogle Scholar
  3. 3.
    Rajakumar A, Michael H, Rajakumar P, Shibata E, Hubel C, Karumanchi S, Thadhani R, Wolf M, Harger G, Markovic N (2005) Extra-plancetal expression of vascular endothelial growth factor receptor-1 (sflt-1), and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cell (PBMCs) in normotensive and preeclamptic pregnant women. Placenta 26:563–573PubMedCrossRefGoogle Scholar
  4. 4.
    Ziche M, Maglione D, Ribatti S, Morbidelli L, Lago C, Battisti M, Paoletti I, Barra A, Tucci M, Parise G, Vincenti V, Granger HJ, Viglietto G, Persico MG (1997) Placental growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76:517–531PubMedGoogle Scholar
  5. 5.
    Levine R, Maynard W, Qian C, Lim K, England L, Yu K, Schisterman b, Epstein F, Sibai B, Sukhatme V, Karumanchi SA (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683PubMedCrossRefGoogle Scholar
  6. 6.
    Tjoa M, Levine R, Karumanchi A (2007) Angiogenic factors and preeclampsia. Front Biosci 12:2395–2402PubMedCrossRefGoogle Scholar
  7. 7.
    Myatt L, Webster R (2008) Vascular biology of preeclampsia. J Thromb Haemost 7:375–384CrossRefGoogle Scholar
  8. 8.
    Ferrera N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRefGoogle Scholar
  9. 9.
    Ahmad S, Ahmed A (2004) Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res 95:884–891PubMedCrossRefGoogle Scholar
  10. 10.
    Levine R, Lam C, Qian C, Yu L, Maynard S, Sachs B, Sibai B, Epstein F, Romero R, Thadhani R, Karumanchi S (2006) Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 355:992–1005PubMedCrossRefGoogle Scholar
  11. 11.
    DeVivo A, Baviera G, Giordano D, Todarello G, Corrado F, D’Anna R (2008) Endoglin, PlGF, and sFlt-1 as markers for predicting preeclampsia. Acta Obstetricia et Gynecologica 87:837–842CrossRefGoogle Scholar
  12. 12.
    Tripathi R, Rath G, Ralhan R, Sazena S, Salhan S (2009) Soluble and membranous vascular endothelial growth factor receptor-2 in pregnancies complicated by pre-eclampsia. Yonsei Med J 50:656–666PubMedCrossRefGoogle Scholar
  13. 13.
    Chaiworaponga T, Romero R, Cotsch F, Espinoza J, Nien J, Gonclaves L, Edwin S, Kim Y, Erez O, Kusanovic J, Pineles B, Papp Z, Hassan S (2008) Low maternal concentrations of soluble vascular endothelial growth factor receptor-2 in preeclampsia and small for gestational age. J Matern Fetal Neonatal Med 21:41–52CrossRefGoogle Scholar
  14. 14.
    Erez O, Romero R, Espinoza J, Fu W, Todem D, Kusanovic J, Cotsch F, Edwin S, Nien J, Chaiworapongsa T, Mittal P, Masaki-Tovi S, Than N, Gomez R, Hassan S (2008) The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small for gestational age. J Matern Fetal Neonatal Med 21:279–287PubMedCrossRefGoogle Scholar
  15. 15.
    Romero R, Nien J, Espinoza J, TOdem D, Fu W, Chung H, Kusanovic J, GOtsch F, Erez O, Mazaki-tovi S, Gomes R, Edwin S, Chaiworapongsa T, Levine R, Karumanchi A (2008) A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble VEGR receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small-for-gestational-age neonate. J Matern Fetal Neonatal Med 21:9–23PubMedCrossRefGoogle Scholar
  16. 16.
    Rana S, Karumanchi S, Levine R, Venkatesha S, Rauh-Hain J, Tamez H, Thadhani R (2007) Sequential changes in antiangiogenic factors in early pregnancy and risk of developing preeclampsia. Hypertension 50:137–142PubMedCrossRefGoogle Scholar
  17. 17.
    Vatten L, Eskild A, Nilsen T, Jeansson S, Jenum P, Staff A (2007) Changes in circulating level of angiogenic factors from the first to the second trimester as predictors of preeclampsia. Am J Obstet Gynecol 196(239):e1–e6PubMedGoogle Scholar
  18. 18.
    Kusanovic J, Romero R, Chaiworapongsa T, Erez O, Mittal P, Vaisbuch E, Mazaki-Tovi S, Cotsch F, Edwin S, Gomez R, Yeo L, Conde-Agudelo A, Hassan S (2009) A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. J Matern Fetal Neonatal Med 22:1021–1038PubMedCrossRefGoogle Scholar
  19. 19.
    Lim J, Kim S, Park S, Yang H, Kim M, Ruy H (2008) Effective prediction of preeclampsia by a combined ratio of angiogenesis-related factors. Obstet Gynecol 111:1403–1409PubMedCrossRefGoogle Scholar
  20. 20.
    Fowles E, Murphey C, Ruiz RJ (2011) Exploring relationships among psychosocial status, dietary quality and measures of placental development during the 1st trimester in low-income women. Biol Res Nurs 13:70–79PubMedCrossRefGoogle Scholar
  21. 21.
    Roberts J, Balk J, Bodnar L, Belizan J, Bergel E, Martinez A (2003) Nutrient involvement in preeclampsia. J Nutr 133:1684A–1692SGoogle Scholar
  22. 22.
    Scholl T, Leskiw M, Chen X, Sims M, Stein T (2005) Oxidative stress, diet and the etiology of preeclampsia. Am J Clin Nutr 81:1390–1396PubMedGoogle Scholar
  23. 23.
    Fiore G, Capasso A (2008) Effects of vitamin E and C on placental oxidative stress: an in vitro evidence for the potential therapeutic or prophylactic treatment of preeclampsia. Med Chem 4:526–530PubMedCrossRefGoogle Scholar
  24. 24.
    Haugen M, Brantsaeter A, Trogstad L, Alexander J, Roth C, Magnus P, Meltzer H (2009) Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology 20:720–726PubMedCrossRefGoogle Scholar
  25. 25.
    Bhargava A (2004) Socio-economic and behavioral factors are predictors of food use in the National Food Stamp Program Survey. Br J Nutr 92:497–506PubMedCrossRefGoogle Scholar
  26. 26.
    Fowles E (2002) Comparing pregnant women’s nutritional knowledge to their actual dietary intake. MCN Am J Matern Child Nurs 27:171–177PubMedCrossRefGoogle Scholar
  27. 27.
    Matthews F, Neil H (1998) Nutrient intakes during pregnancy in a cohort of nulliparous women. J Hum Nutr Diet 11:151–161CrossRefGoogle Scholar
  28. 28.
    Suitor C, Gardner J, Feldstien M (1990) Characteristics of diet among a culturally diverse group of low-income pregnant women. J Hum Nutr Diet 90:543–550Google Scholar
  29. 29.
    Swenson A, Harnack L, Ross J (2001) Nutritional assessment of pregnant women enrolled in the Special Supplemental Program for Women, Infants, and Children (WIC). J Am Diet Assoc 101:903–908CrossRefGoogle Scholar
  30. 30.
    Turner R, Langkamp-Henken B, Littell R, Lukowksi M, Suarez M (2003) Comparing nutrient intake from food to the estimated average requirements shows middle- to upper-income pregnant women lack iron and possible magnesium. J Am Diet Assoc 103:461–466PubMedGoogle Scholar
  31. 31.
    Wunderlich S, Hongu N, Courter A, Bendixen C (1996) Nutrient intake and nutritional status of low-income pregnant women. Top Clin Nutr 12:66–73Google Scholar
  32. 32.
    Brodsky D, Christou H (2004) Current concepts in intrauterine growth restriction. J Intensive Care Med 19:307–319PubMedCrossRefGoogle Scholar
  33. 33.
    Kind K, Moore V, Davies M (2006) Diet around conception and during pregnancy: effects on fetal and neonatal outcomes. Reprod Biomed Online 12:532–541PubMedCrossRefGoogle Scholar
  34. 34.
    Baschat A, Hecher K (2004) Fetal growth restriction due to placental disease. Semin Perinatol 28:67–80PubMedCrossRefGoogle Scholar
  35. 35.
    Cross J, Mickelson L (2006) Nutritional influences on implantation and placental development. Nutr Rev 64(5, Part 2):S12–S18PubMedCrossRefGoogle Scholar
  36. 36.
    Brown J, Murtaugh M, Jacobs D, Margellos H (2002) Variation in newborn size according to pregnancy weight change by trimester. Am J Clin Nutr 76:205–209PubMedGoogle Scholar
  37. 37.
    Susser M, Stein Z (1994) Timing of prenatal nutrition: a reprise of the Dutch Famine Study. Nutr Rev 52:84–94PubMedCrossRefGoogle Scholar
  38. 38.
    Relton C, Pearce M, Parker L (2005) The influence of erythrocyte folate and serum vitamin B12 status on birth weight. Br J Nutr 93:593–599PubMedCrossRefGoogle Scholar
  39. 39.
    Barker D (1995) Fetal origins of coronary heart disease. Br Med J 311(6998):171–174CrossRefGoogle Scholar
  40. 40.
    Barker D (1999) Fetal origins of type 2 diabetes mellitus. Ann Intern Med 130:322–325PubMedGoogle Scholar
  41. 41.
    Godfrey K, Barker D (2000) Fetal nutrition and adult disease. Am J Clin Nutr 71(Suppl. 1):1344S–1352SPubMedGoogle Scholar
  42. 42.
    Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D (2000) Fetal and childhood growth and hypertension in adult life. Hypertension 36:790–794PubMedGoogle Scholar
  43. 43.
    McMillen I, Muhlhausler B, Duffield J, Yuen B (2004) Prenatal programming of postnatal obesity: Fetal nutrition and the regulation of leptin synthesis and secretion before birth. Proc Nutr Soc 63:405–412PubMedCrossRefGoogle Scholar
  44. 44.
    Wild S, Byrne C (2004) Evidence for fetal programming of obesity with a focus on putative mechanisms. Nutr Res Rev 17:153–162PubMedCrossRefGoogle Scholar
  45. 45.
    Stevens J (2002) Applied multivariate statistics for the social sciences, 4th edn. Psychology Press, New YorkGoogle Scholar
  46. 46.
    Fox J (2008) Applied regression analysis and generalized linear models, 2nd edn. Sage, Newbury ParkGoogle Scholar
  47. 47.
    Schlaeppi JM, Gutzwiller S, Finkenzeller G, Fournier B (1997) 1,25-dihydroxyvitamin D3 induces the expression of vascular endothelial growth factor in osteoblastic cells. Endocr Res 23:213–229PubMedCrossRefGoogle Scholar
  48. 48.
    Wang DS, Miura M, Demura H, Sato K (1997) Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells.Endocrinology 138:2953–2962PubMedCrossRefGoogle Scholar
  49. 49.
    Cardus A, Panizo S, Encinas M, Dolcet X, Gallego C, Aldea M, Fernandez E, Valdivielso JM (2009) 1,25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis 204:85–89PubMedCrossRefGoogle Scholar
  50. 50.
    Cardús A, Parisi E, Gallego C, Aldea M, Fernández E, Valdivielso JM (2006) 1,25-Dihydroxyvitamin D3 stimulates vascular smooth muscle cell proliferation through a VEGF-mediated pathway. Kidney Int 69:1377–1384PubMedGoogle Scholar
  51. 51.
    Gruber HE, Hoelscher G, Ingram JA, Chow Y, Loeffler B, Hanley EN Jr (2008) 1,25(OH)2-vitamin D3 inhibits proliferation and decreases production of monocyte chemoattractant protein-1, thrombopoietin, VEGF, and angiogenin by human annulus cells in vitro. Spine 33:755–765PubMedCrossRefGoogle Scholar
  52. 52.
    Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y, Mabjeesh NJ (2007) 1alpha,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther 6:1433–1439PubMedCrossRefGoogle Scholar
  53. 53.
    Levine MJ, Teegarden D (2004) 1alpha,25-dihydroxycholecalciferol increases the expression of vascular endothelial growth factor in C3H10T1/2 mouse embryo fibroblasts. J Nutr 134:2244–2250PubMedGoogle Scholar
  54. 54.
    Kulkarni AV, Mehendale SS, Yadav HR, Joshi SR (2011) Reduced placental docosahexaenoic acid levels associated with increased levels of sFlt-1 in preeclampsia. Prostaglandins Leukot Essent Fatty Acids 84(1–2):51–55PubMedCrossRefGoogle Scholar
  55. 55.
    Kulkarni AV, Mehendale SS, Yadav HR, Kilari AS, Taralekar VS, Joshi SR (2010) Circulating angiogenic factors and their association with birth outcomes in preeclampsia. Hypertens Res 33:561–567PubMedCrossRefGoogle Scholar
  56. 56.
    Bhatia J (2005) Perinatal nutrition: optimizing infant health and development. Marcel Dekker, New YorkGoogle Scholar
  57. 57.
    Rasmussen K (2001) Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation and perinatal mortality? J Nutr 131:590S–603SPubMedGoogle Scholar
  58. 58.
    Patil S, Kodiwadmath M, Kodiwadmath S (2008) Lipid peroxidation and antioxidant status in hypertensive pregnancies. Clin Exper Obstet Gynecol 35:272–274Google Scholar
  59. 59.
    Williams M, Woelk G, King I, Jenkins L, Mahomed K (2003) Plasma carotenoids, retinol, tocopherols, and lipoproteins in preeclamptic and normotensive pregnant Zimbabwean women. Am J Hypertens 16:665–672PubMedCrossRefGoogle Scholar
  60. 60.
    Finch B (2003) Socioeconomic gradients and low birth-weight: empirical and policy considerations. Health Serv Res 38:1819–1842PubMedCrossRefGoogle Scholar
  61. 61.
    Watts V, Rockett H, Baer H, Colditz G (2007) Assessing dietary quality in a population of low-income pregnant women: a comparison between Native American and Whites. Matern Child Health J 11:127–136PubMedCrossRefGoogle Scholar
  62. 62.
    Rumbold A, Crowther C (2005) Vitamin E supplementation in pregnancy. Cochrane Datatabase Syst Rev 18(2):CD004069Google Scholar
  63. 63.
    Rumbold A, Crowther C (2005) Vitamin C supplementation in pregnancy. Cochrane Datatabase Syst Rev 18(2):CD004072Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Eileen R. Fowles
    • 1
  • Lorraine O. Walker
    • 1
  • C. Nathan Marti
    • 2
  • Roberta Jeanne Ruiz
    • 1
  • Joel Wommack
    • 1
  • Miranda Bryant
    • 1
  • SungHun Kim
    • 1
  • Gayle M. Timmerman
    • 1
  1. 1.The University of Texas at Austin, School of NursingAustinUSA
  2. 2.Division of Statistics and Scientific ComputationThe University of Texas at Austin, College of Natural SciencesAustinUSA

Personalised recommendations