Skip to main content
Log in

Antiproliferative activity of lignans against the breast carcinoma cell lines MCF 7 and BT 20

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Phytoestrogens are plant-derived, non-steroidal phytochemicals with anticarcinogenic potential. The major structural classes are the isoflavones and lignans. The aim of this study was to compare the effect of the plant-derived lignans secoisolariciresinol and matairesinol with the human lignans enterodiol and enterolactone as well as with 17β estradiol and tamoxifen on cell proliferation of breast carcinoma cell lines.

Methods

The influence of the lignans, 17β estradiol and tamoxifen on cell proliferation was determined using the BrdU test in MCF 7 and BT 20 cell lines.

Results

Enterodiol and enterolactone induced a stronger inhibition of cell growth in MCF 7 and BT 20 cells than secoisolariciresinol and matairesinol. The inhibition effects were less expressed in the BT 20 than in the MCF 7 cells.

Conclusions

The human lignans enterodiol and enterolactone are more biologically active than their precursors secoisolariciresinol and matairesinol, and may be defined as the real drugs in cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rickard-Bon SE, Thompson LU (2003) The role of flaxseed lignans in hormone-dependent and independent cancer. In: Westcott ND, Muir AD (eds) Flax, the Genus Linum. Taylor and Francis Inc, London, pp 181–203

    Google Scholar 

  2. Kulling EK, Watzl W (2003) Phytoöstrogene. Ernährungs-Umschau 50:234–239

    CAS  Google Scholar 

  3. Lee KH, Xiao Z (2003) Lignans in treatment of cancer and other diseases. Phytochem Rev 2:341–362

    Article  CAS  Google Scholar 

  4. Setchell KD (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68:1333S–1346S

    PubMed  CAS  Google Scholar 

  5. Plessow D, Waldschläger J, Richter D-U, Jeschke U, Bruer G, Briese V, Friese K (2003) Effects of phytoestrogens on the trophoblast tumour cell lines BeWo and Jeg3. Anticancer Res 23:1081–1086

    PubMed  CAS  Google Scholar 

  6. Westcott ND, Muir AD (2003) Chemical studies on the constituents of Linum spp. In: Westcott ND, Muir AD (eds) Flax, the Genus Linum. Taylor and Francis Inc, London, pp 55–73

    Google Scholar 

  7. Adlercreutz H (1995) Phytoestrogens: epidemiology and a possible role in cancer protection. Environ Health Perspect 103:103–112

    PubMed  CAS  Google Scholar 

  8. Fournier DB, Erdmann JW Jr, Gordon GB (1998) Soy, its components, and cancer prevention: a review of the in vitro, animal, and human data. Cancer Epidemiol Biomarkers Prev 7:1055–1065

    PubMed  CAS  Google Scholar 

  9. Zhou JR, Gugger ET, Tanaka T, Guo Y, Blackburn GL, Clinton SK (1999) Soybean phytochemicals inhibit the growth of transplantable human prostata carcinoma and tumor angiogenesis in mice. J Nutr 129:1628–1635

    PubMed  CAS  Google Scholar 

  10. Saarinen NM, Power K, Chen J, Thompson LU (2006) Flaxseed attenuates the tumor growth stimulating effect of soy protein in ovariectomized athymic mice with MCF-7 human breast cancer xenografts. Int J Cancer 119:925–931

    Article  PubMed  CAS  Google Scholar 

  11. Waldschläger J, Bergemann C, Ruth W, Effmert U, Jeschke U, Richter D-U, Kragl U, Piechulla B, Briese V (2005) Flax-seed extracts with phytoestrogenic effects on a hormone receptor-positive tumour cell line. Anticancer Res 25:1817–1822

    PubMed  Google Scholar 

  12. Abarzua S, Szewczyk M, Gailus S, Richter D-U, Ruth W, Briese V, Piechulla B (2007) Effects of phytoestrogen extracts from Linum usitatissimum on the Jeg3 human trophoblast tumour cell line. Anticancer Res 27:2053–2058

    PubMed  CAS  Google Scholar 

  13. Szewczyk M, Abarzua S, Schlichting A, Richter D-U, Nebe B, Piechulla B, Briese V (2011) Effects of flax extracts from Linum usitatissimum on cell vitality, proliferation and cytotoxicity in human carcinoma breast cell lines in vitro. Eur J Cancer Prev (submitted)

  14. Kinghorn AD, Su BN, Jang DS, Chang LC, Lee D, Gu JQ, Carcache-Blanco EJ, Powlus AD, Lee SK, Park EJ, Cuendet M, Gills JJ, Bhat K, Park HS, Mata-Greenwood E, Song LL, Jong MH, Pezzuto JM (2004) Natural inhibitors of carcinogenesis. Planta Med 70:691–705

    Article  PubMed  CAS  Google Scholar 

  15. Paschke D, Abarzua S, Schlichting A, Richter D-U, Leinweber P, Briese V (2009) Inhibitory effects of bark extracts from Ulmus laevis on endometrial carcinoma: an in vitro study. Eur J Cancer Prev 18:162–168

    Article  PubMed  Google Scholar 

  16. Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med 230:155–170

    CAS  Google Scholar 

  17. Arroo RRJ, Androutsopoulos V, Patel A, Surichan S, Wilsher N, Potter GA (2008) Phytoestrogens as natural prodrugs in cancer prevention: a novel concept. Phytochem Rev 7:431–443

    Article  CAS  Google Scholar 

  18. Begum AN, Nicolle C, Mila I, Lapierre C, Nagano K, Fukushima K, Heinonen SM, Adlercreutz H, Remesy C, Scalbert A (2004) Dietary lignins are precursors of mammalian lignans in rats. J Nutr 134:120–127

    PubMed  CAS  Google Scholar 

  19. Wang LQ (2002) Mammalian phytoestrogens: enterodiol and enterolactone. J Chromatogr B Analyt Technol Biomed Life Sci 25;777(1–2):289–309

    Google Scholar 

  20. Saarinen NM, Wärri A, Airio M, Smeds A, Mäkelä S (2007) Role of dietary lignans in the reduction of breast cancer risk. Mol Nutr Food Res 51(7):857–866

    Article  PubMed  CAS  Google Scholar 

  21. Mousavi Y, Adlercreutz H (1992) Enterolactone and estradiol inhibit each other’s proliferative effect on MCF-7 breast cancer cells in culture. J Steroid Biochem Mol Biol 41:615–619

    Article  PubMed  CAS  Google Scholar 

  22. Kinghorn AD, Su BN, Lee D, Gu JQ, Pezzuto JM (2003) Cancer chemopreventive agents discovered by activity-guided fractionation: An update. Curr Org Chem 7:213–226

    Article  CAS  Google Scholar 

  23. Wang C, Kurzer MS (1997) Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr Cancer 28:236–247

    Article  PubMed  CAS  Google Scholar 

  24. Adlercreutz H, Mazur W (1997) Phytoestrogens and western diseases. Ann Med 29:95

    PubMed  CAS  Google Scholar 

  25. Usui T (2006) Pharmaceutical prospects of phytoestrogens. Endocr J 53:1579–1585

    Article  Google Scholar 

  26. Welshons WV, Murphy CS, Koch R, Galaf G, Jordan VC (1987) Stimulation of breast cancer cells in vitro by the environmental estrogen enterolactone and the phytoestrogen equol. Breast Cancer Res Treat 10:169–175

    Article  PubMed  CAS  Google Scholar 

  27. Sathyamoorthy N, Wang TT, Phang JM (1994) Stimulation of pS2 expression by diet-derived compounds. Cancer Res 54:957–961

    PubMed  CAS  Google Scholar 

  28. Cauley JA, Lucas FL, Kuller LH, Stone K, Browner W, Cummings SR, Study of Osteoporotic Fractures Research Group (1999) Elevated serum estradiol and testosterone concentrations are associated with a high risk for breast cancer. Ann Intern Med 130:270–277

    PubMed  CAS  Google Scholar 

  29. Zheng A, Kallio A, Härkönen P (2007) Tamoxifen-induced rapid death of MCF-7 breast cancer cells is mediated via extracellularly signal-regulated kinase signaling and can be abrogated by estrogen. Endocrin 148(6):2764–2777

    Article  CAS  Google Scholar 

  30. Todorova VK, Kaufmann Y, Luo S, Klimberg VS (2011) Tamoxifen and raloxifene suppress the proliferation of estrogen receptor-negative cells through inhibition of glutamine uptake. Cancer Chemother Pharmacol 67:285–291

    Article  PubMed  CAS  Google Scholar 

  31. Liang Y, Hou M, Kallab AM, Barrett JT, El Etreby F, Schoenlein PV (2003) Induction of antiproliferation and apoptosis in estrogen receptor negative MDA-231 human breast cancer cells by mifepristone and 4-hydroxy-tamoxifen combination therapy: a role for TGF beta1. Int J Oncol 23:369–380

    PubMed  CAS  Google Scholar 

  32. Perry RR, Kang Y, Greaves BR (1995) Relationship between tamoxifen-induced transforming growth factor beta 1 expression, cytostasis and apoptosis in human breast cancer cells. Br J Cancer 72:1441–1446

    Article  PubMed  CAS  Google Scholar 

  33. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomized trials. Lancet 378, 9793:771–784. doi:10.11016/S0140-6736(11)60993-8

    Google Scholar 

  34. Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A4 and CYP2D6. J Pharmacol Exp Ther 310:1062–1075

    Article  PubMed  CAS  Google Scholar 

  35. Szliszka E, Helewski KJ, Mizgala E, Krol W (2011) The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int J Oncol 39(4):771–779

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. C. Bauer and Mrs. E. Greschkowitz for technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle Abarzua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abarzua, S., Serikawa, T., Szewczyk, M. et al. Antiproliferative activity of lignans against the breast carcinoma cell lines MCF 7 and BT 20. Arch Gynecol Obstet 285, 1145–1151 (2012). https://doi.org/10.1007/s00404-011-2120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-011-2120-6

Keywords

Navigation