Recent advances in optical imaging for cervical cancer detection

  • Irene M. Orfanoudaki
  • Dimitra Kappou
  • Stavros Sifakis
Gynecologic Oncology

Abstract

Cervical cancer is one of the most common and lethal gynecological malignancies in both developing and developed countries, and therefore, there is a considerable interest in early diagnosis and treatment of precancerous lesions. Although the current standard care mainly based on cytology and colposcopy has reduced rates of cervical cancer morbidity and mortality, many lesions are still missed or overcalled and referred for unnecessary biopsies. Optical imaging technologies, spectroscopy approaches and high-resolution imaging methods are anticipated to improve the conventional cervical cancer screening providing in vivo diagnosis with high sensitivity and specificity. Their concept is that morphologic and biochemical properties of the cervical tissue are altered in response to its malignant transformation. In addition, contrast agents that target against specific neoplastic biomarkers can enhance the effectiveness of this new technology. Due to the unprecedented growth of these optical techniques accompanied probably by favorable cost-effectiveness, the primary detection of premalignant lesions may become more accessible in both the developing and the developed countries and can offer see-to-treat workflows and early therapeutic interventions.

Keywords

Cervical cancer screening Cervical intraepithelial lesion Squamous intraepithelial lesion Optical spectroscopy Optical imaging of the uterine cervix 

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2002) Global cancer statistics. CA Cancer J Clin 55:74–108CrossRefGoogle Scholar
  2. 2.
    Agosti JM, Goldie SJ (2007) Introducing HPV vaccine in developing countries–key challenges and issues. N Engl J Med 356:1908–1910PubMedCrossRefGoogle Scholar
  3. 3.
    National Cancer Institute (NCI). Cervical Cancer Screening (PDQ®). Last Modified: 07/03/2010. http://www.cancer.gov/cancertopics/pdq/screening/cervical/healthprofessional
  4. 4.
    Mitchell MF, Schottenfeld D, Tortolero-Luna G, Cantor SB, Richards-Kortum R (1998) Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis. Obstet Gynecol 91:626–631PubMedCrossRefGoogle Scholar
  5. 5.
    Sawaya GF, Brown AD, Washington AE, Garber AM (2001) Clinical practice. Current approaches to cervical-cancer screening. N Engl J Med 344:1603–1607PubMedCrossRefGoogle Scholar
  6. 6.
    Sauvaget C, Fayette JM, Muwonge R, Wesley R, Sankaranarayanan R (2011) Accuracy of visual inspection with acetic acid for cervical cancer screening. Int J Gynaecol Obstet 113:14–24PubMedCrossRefGoogle Scholar
  7. 7.
    Anonymous. Electro-optical sensors for the in vivo detection of cervical cancer and its precursors: submission guidance for an IDE/PMA. Rockville, MD. Food and drug administration. 1999 05/21/1999:Report No:266Google Scholar
  8. 8.
    Thekket N, Richards-Kortum R (2008) Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat Rev Cancer 8:725–731CrossRefGoogle Scholar
  9. 9.
    Mourant JR, Canpolat M, Brocker C et al (2000) Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. J Biomed Opt 5:131–137PubMedCrossRefGoogle Scholar
  10. 10.
    Collier T, Follen M, Malpica A, Richards-Kortum R (2005) Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy. Appl Opt 44:2072–2081PubMedCrossRefGoogle Scholar
  11. 11.
    Drezek R, Guillaud M, Collier T et al (2003) Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. J Biomed 8:7–16Google Scholar
  12. 12.
    Drezek R, Brookner C, Pavlova I et al (2001) Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem Photobiol 73:636–641PubMedCrossRefGoogle Scholar
  13. 13.
    Adrian Freeberg J, Benedet JL, West LA, Atkinson EN, MacAulay C, Follen M (2007) The clinical effectiveness of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia: An analysis by phase of trial design. Gynecol Oncol 107:270–280CrossRefGoogle Scholar
  14. 14.
    Mourant JR, Bocklage TJ, Powers TM et al (2007) In vivo light scattering measurements for detection of precancerous conditions of the cervix. Gynecol Oncol 105:439–445PubMedCrossRefGoogle Scholar
  15. 15.
    Chang SK, Mirabal YN, Atkinson EN et al (2005) Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer. J Biomed Opt 10:024031PubMedCrossRefGoogle Scholar
  16. 16.
    Georgakoudi I, Sheets EE, Muller MG et al (2002) Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am J Obstet Gynecol 186:374–382PubMedCrossRefGoogle Scholar
  17. 17.
    Nordstrom RJ, Burke L, Niloff JM, Myrtle JF (2001) Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg Med 29:118–127PubMedCrossRefGoogle Scholar
  18. 18.
    Parker MF, Mooradian GC, Okimoto GS, O’ Connor DM, Miyazawa K, Saggese SJ (2002) Initial neural net construction for the detection of cervical intraepithelial neoplasia by fluorescence imaging. Am J Obstet Gynecol 187:398–402PubMedCrossRefGoogle Scholar
  19. 19.
    Wright T, Ferenczy A, Wray S, Christinson R, Ganguly D (1999) Detection of cervical squamous intraepithelial lesions using evoked tissue fluorescence. Abstracts presented for the thirtieth annual meeting of the Society of gynecologic oncologists. Gynecol Oncol 72:45Google Scholar
  20. 20.
    Weingandt H, Stepp H, Baumgartner R, Diebold J, Xiang W, Hillemanns P (2002) Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia. Br J Obstet Gynecol 109:947–951CrossRefGoogle Scholar
  21. 21.
    Chang SK, Follen M, Malpica A et al (2002) Optimal excitation wavelengths for discrimination of cervical neoplasia. IEEE Trans Biomed Eng 49:1102–1111PubMedCrossRefGoogle Scholar
  22. 22.
    Mitchell MF, Cantor SB, Ramanujam N, Tortolero-Luna G, Richards-Kortum R (1999) Fluorescence spectroscopy for diagnosis of squamous intraepithelial lesions of the cervix. Obstet Gynecol 93:462–470PubMedCrossRefGoogle Scholar
  23. 23.
    Mirabal YN, Chang SK, Atkinson EN, Malpica A, Follen M, Richards-Kortum R (2002) Reflectance spectroscopy for in vivo detection of cervical precancer. J Biomed Opt 7:587–594PubMedCrossRefGoogle Scholar
  24. 24.
    Steller W, Einenkel J, Horn LC et al (2006) Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging. Anal Bioanal Chem 384:145–154PubMedCrossRefGoogle Scholar
  25. 25.
    Boydston-White S, Romeo M, Chernenko T, Regina A, Miljkoviζ M, Diem M (2006) Cell-cycle-dependent variations in FTIR micro-spectra of single proliferating HeLa cells: principal component and artificial neural network analysis. Biochim Biophys Acta 1758:908–914PubMedCrossRefGoogle Scholar
  26. 26.
    Podshyvalov A, Sahu RK, Mark S et al (2005) Distinction of cervical cancer biopsies by use of infrared microspectroscopy and probabilistic neural networks. Appl Opt 44:3334–3725CrossRefGoogle Scholar
  27. 27.
    Krishna CM, Prathima NB, Malini R et al (2006) Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix. Vib Spectrosc 41:136–141CrossRefGoogle Scholar
  28. 28.
    Mo J, Zheng W, Low JJ, Ng J, Ilancheran A, Huang Z (2009) High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia. Anal Chem 81:8908–8915PubMedCrossRefGoogle Scholar
  29. 29.
    Jess PRT, Smith DDW, Mazilu M, Dholakia K, Riches AC, Herrington CS (2007) Early detection of cervical neoplasia by Raman spectroscopy. Int J Cancer 121:2723–2728PubMedCrossRefGoogle Scholar
  30. 30.
    Robichaux-Viehoever A, Kanter E, Shappell H, Billheimer D, Jones H, Mahadevan-Jansen A (2007) Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia. Appl Spectrosc 61:986–993PubMedCrossRefGoogle Scholar
  31. 31.
    Balas CJ, Themelis GC, Prokopakis EP, Orfanoudaki I, Koumantakis E, Helidonis ES (1999) In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics. J Photochem Photobiol B 53:153–157PubMedCrossRefGoogle Scholar
  32. 32.
    Balas C (2001) A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix. IEEE Trans Biomed Eng 48:96–104PubMedCrossRefGoogle Scholar
  33. 33.
    Orfanoudaki I, Themelis G, Sifakis S et al (2005) A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system. Gynecol Oncol 96:119–131PubMedCrossRefGoogle Scholar
  34. 34.
    Adrian Freeberg J, Benedet JL, MacAulay C, West LA, Follen M (2007) The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches. Gynecol Oncol 107:248–255CrossRefGoogle Scholar
  35. 35.
    Ferris DG, Lawhead RA, Dickman ED et al (2001) Multimodal multispectral Imaging for the noninvasive diagnosis of cervical neoplasia. J Low Genit Tract Dis 5:65–72PubMedGoogle Scholar
  36. 36.
    DeSantis T, Chakhtoura N, Twiggs L et al (2007) Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial. J Low Genit Tract Dis 11:18–24PubMedCrossRefGoogle Scholar
  37. 37.
    Huh WK, Cestero RM, Garcia FA et al (2004) Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study. Am J Obstet Gynecol 190:1249–1257PubMedCrossRefGoogle Scholar
  38. 38.
    Kendrick JE, Huh WK, Alvarez RD (2007) LUMA cervical imaging system. Expert Rev Med Devices 4:121–129PubMedCrossRefGoogle Scholar
  39. 39.
    Alvarez RD, Wright TC (2007) Increased detection of high-grade cervical intraepithelial neoplasia utilizing an optical detection system as an adjunct to colposcopy. Gynecol Oncol 106:23–28PubMedCrossRefGoogle Scholar
  40. 40.
    Alvarez RD, Wright TC (2007) Effective cervical neoplasia detection with a novel optical detection system: a randomized trial. Gynecol Oncol 104:281–289PubMedCrossRefGoogle Scholar
  41. 41.
    Adams KE, Ke S, Kwon S et al (2007) Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 12:024017PubMedCrossRefGoogle Scholar
  42. 42.
    Aaron J, Nitin N, Travis K et al (2007) Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J Biomed Opt 12:034007PubMedCrossRefGoogle Scholar
  43. 43.
    Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2:1412–1417PubMedCrossRefGoogle Scholar
  44. 44.
    Drezek R, Richards-Kortum R, Brewer MA et al (2003) Optical imaging of the cervix. Cancer 98:2015–2027PubMedCrossRefGoogle Scholar
  45. 45.
    Tan J, Quinn M, Pyman J, Delaney P, McLaren W (2009) Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy. BJOG 116:1663–1670PubMedCrossRefGoogle Scholar
  46. 46.
    Collier T, Lacy A, Richards-Kortum R, Malpica A, Follen M (2002) Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue. Acad Radiol 9:504–512PubMedCrossRefGoogle Scholar
  47. 47.
    Pitris C, Goodman A, Boppart SA, Libus JJ, Fujimoto JG, Brezinski ME (1999) High-resolution imaging of gynecologic neoplasms using optical coherence tomography. Obstet Gynecol 93:135–139PubMedCrossRefGoogle Scholar
  48. 48.
    Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254(5035):1178–1181PubMedCrossRefGoogle Scholar
  49. 49.
    Gallwas J, Turk L, Friese K, Dannecker C (2010) Optical coherence tomography as a non-invasive imaging technique for preinvasive and invasive neoplasia of the uterine cervix. Ultrasound Obstet Gynecol 36:624–629PubMedCrossRefGoogle Scholar
  50. 50.
    Escobar PF, Belinson JL, White A et al (2004) Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva. Int J Gynecol Cancer 14:470–474PubMedCrossRefGoogle Scholar
  51. 51.
    Fujimoto JG, Pitris C, Boppart SA, Brezinski ME (2000) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2:9–25PubMedCrossRefGoogle Scholar
  52. 52.
    Escobar PF, Rojas-Espaillat L, Tisci S et al (2006) Optical coherence tomography as a diagnostic aid to visual inspection and colposcopy for preinvasive and invasive cancer of the uterine cervix. Int J Gynecol Cancer 16:1815–1822PubMedCrossRefGoogle Scholar
  53. 53.
    Wulan N, Rasool N, Belinson SE et al (2010) Study of the diagnostic efficacy of real-time optical coherence tomography as an adjunct to unaided visual inspection with acetic acid for the diagnosis of preinvasive and invasive neoplasia of the uterine cervix. Int J Gynecol Cancer 20:422–427PubMedCrossRefGoogle Scholar
  54. 54.
    Barton JK, Guzman F, Tumlinson A (2004) Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy. J Biomed Opt 9:618–623PubMedCrossRefGoogle Scholar
  55. 55.
    Lee SW, Yoo JY, Kang JH et al (2008) Optical diagnosis of cervical intraepithelial neoplasia (CIN) using polarization-sensitive optical coherence tomography. Optics Express 2709–2719Google Scholar
  56. 56.
    Liu Z, Belinson SE, Li J et al (2010) Diagnostic efficacy of real-time optical coherence tomography in the management of preinvasive and invasive neoplasia of the uterine cervix. Int J Gynecol Cancer 20:283–287PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Irene M. Orfanoudaki
    • 1
  • Dimitra Kappou
    • 1
  • Stavros Sifakis
    • 1
  1. 1.Department of Obstetrics and GynecologyUniversity Hospital of HeraklionCreteGreece

Personalised recommendations