Archives of Gynecology and Obstetrics

, Volume 280, Issue 4, pp 579–584

Patterns and success of fetal programming among women with low and extremely low pre-pregnancy BMI

  • Victoria Belogolovkin
  • Amina P. Alio
  • Alfred K. Mbah
  • Heather B. Clayton
  • Deanna Wathington
  • Hamisu M. Salihu
Original Article

Abstract

Purpose

To estimate the frequency of fetal programming phenotypes among women with low BMI and the success of these programming patterns-to determine if small for gestational age (SGA) is a biologically adaptive mechanism to improve chances for infant survival.

Methods

We examined the frequency of fetal programming phenotypes: SGA, large for gestational age (LGA), and adequate for gestational age (AGA) among 1,063,888 singleton live births from 1978 to 1997. We also estimated the success of fetal programming phenotypes using neonatal death as the primary study outcome.

Results

Underweight gravidas with AGA and LGA babies had elevated risk of neonatal mortality when compared to normal weight mothers, while the risk for neonatal mortality among mothers with SGA babies was reduced.

Conclusions

The variation in relative degrees of fetal programming patterns and success observed suggests that underweight mothers are more likely to succeed in programming SGA fetuses rather than any other phenotype.

Keywords

Low BMI SGA Fetal programming Neonatal mortality 

References

  1. 1.
    Abenhaim HA, Kinch RA, Morin L, Benjamin A, Usher R (2007) Effect of prepregnancy body mass index categories on obstetrical and neonatal outcomes. Arch Gynecol Obstet 275:39–43. doi:10.1007/s00404-006-0219-y PubMedCrossRefGoogle Scholar
  2. 2.
    Doherty DA, Magann EF, Francis J, Morrison JC, Newham JP (2006) Pre-pregnancy body mass index and pregnancy outcomes. Int J Gynaecol Obstet 95:242–247. doi:10.1016/j.ijgo.2006.06.021 PubMedCrossRefGoogle Scholar
  3. 3.
    Sukalich S, Mingione MJ, Glantz C (2006) Obstetric outcomes in overweight and obese adolescents. Am J Obstet Gynecol 195:851–855. doi:10.1016/j.ajog.2006.06.070 PubMedCrossRefGoogle Scholar
  4. 4.
    Cnattingius S, Bergstrom R, Lipworth L, Kramer MS (1998) Prepregnancy weight and the risk of adverse pregnancy outcomes. N Engl J Med 338:147–152. doi:10.1056/NEJM199801153380302 PubMedCrossRefGoogle Scholar
  5. 5.
    Sahu MT, Agarwal A, Das V, Pandey A (2007) Impact of maternal body mass index on obstetric outcome. J Obstet Gynaecol Res 33:655–659. doi:10.1111/j.1447-0756.2007.00646.x PubMedCrossRefGoogle Scholar
  6. 6.
    Salihu HM, Mbah AK, Alio AP, Kirby RS (2008) AGA-primed versus SGA-primed uterus and the success of subsequent in utero fetal programming. Obstet Gynecol 111:935–943PubMedGoogle Scholar
  7. 7.
    Herman AA, McCarthy BJ, Bakewell JM, Ward RH, Mueller BA, Maconochie NE et al (1997) Data linkage methods used in maternally-linked birth and infant death surveillance data sets from the United States (Georgia, Missouri, Utah and Washington State), Israel, Norway, Scotland and Western Australia. Paediatr Perinat Epidemiol 11(Supp 1):5–22. doi:10.1046/j.1365-3016.11.s1.11.x PubMedCrossRefGoogle Scholar
  8. 8.
    Martin J, Curtin S, Saulnier M, Mousavi J (2003) Development of the matched multiple birth file. 1995–1998 matched multiple birth dataset. NCHS CD-ROM series 21, no. 13a. National Center for Health Statistics, HyattsvilleGoogle Scholar
  9. 9.
    Herman AA, Yu KF (1997) Adolescent age at first pregnancy and subsequent obesity. Paediatr Perinat Epidemiol 11(Suppl 1):130–141. doi:10.1046/j.1365-3016.11.s1.5.x PubMedCrossRefGoogle Scholar
  10. 10.
    McTigue K, Larson JC, Valoski A, Burke G, Kotchen J, Lewis CE et al (2006) Mortality and cardiac and vascular outcomes in extremely obese women. JAMA 296:79–86. doi:10.1001/jama.296.1.79 PubMedCrossRefGoogle Scholar
  11. 11.
    NHLBI (1998) Obesity education initiative clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Bethesda, MD: US Department of Health and Human Services, Public Health Services, National Institutes of Health, National Heart, Lung, and Blood InstituteGoogle Scholar
  12. 12.
    Physical status: the use, interpretation of anthropometry (1995) Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 854:1–452Google Scholar
  13. 13.
    WHO expert consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403):157–163CrossRefGoogle Scholar
  14. 14.
    Taffel S, Johnson D, Heuser R (1982) A method of imputing length of gestation on birth certificates. Vital Health Stat 2 93:1–11PubMedGoogle Scholar
  15. 15.
    Piper JM, Mitchel EF Jr, Snowden M, Hall C, Adams M, Taylor P (1993) Validation of 1989 Tennessee birth certificates using maternal and newborn hospital records. Am J Epidemiol 137:758–768PubMedGoogle Scholar
  16. 16.
    Wingate MS, Alexander GR, Buekens P, Vahratian A (2007) Comparison of gestational age classifications: date of last menstrual period vs. clinical estimate. Ann Epidemiol 17:425–430. doi:10.1016/j.annepidem.2007.01.035 PubMedCrossRefGoogle Scholar
  17. 17.
    Alexander GR, Kotelchuck M (1996) Quantifying the adequacy of prenatal care: a comparison of indices. Public Health Rep 111:408–418 (discussion 419)PubMedGoogle Scholar
  18. 18.
    Alexander GR, Cornely DA (1987) Prenatal care utilization: its measurement and relationship to pregnancy outcome. Am J Prev Med 3:243–253PubMedGoogle Scholar
  19. 19.
    Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130. doi:10.2307/2531248 PubMedCrossRefGoogle Scholar
  20. 20.
    Clayton D, Hills M (1993) Statistical models in epidemiology. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Barker DJ (2003) Coronary heart disease: a disorder of growth. Horm Res 59(Suppl 1):35–41. doi:10.1159/000067843 PubMedCrossRefGoogle Scholar
  22. 22.
    Mahajan SD, Singh S, Shah P, Gupta N, Kochupillai N (2004) Effect of maternal malnutrition and anemia on the endocrine regulation of fetal growth. Endocr Res 30(2):189–203. doi:10.1081/ERC-200027380 PubMedCrossRefGoogle Scholar
  23. 23.
    Stein AD, Zybert PA, van der Pal-de Bruin K, Lumey LH (2006) Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: evidence from the Dutch Famine. Eur J Epidemiol 21(10):759–765. doi:10.1007/s10654-006-9065-2 PubMedCrossRefGoogle Scholar
  24. 24.
    World Health Organization (2007) Nutrition and food security: body mass index. http://www.euro.who.int/nutrition/20030507_1. Accessed 17 September 2008
  25. 25.
    Chelbi ST, Vaiman D (2008) Genetic and epigenetic factors contribute to the onset of preeclampsia. Mol Cell Endocrinol 282(1–2):120–129. doi:10.1016/j.mce.2007.11.022 PubMedCrossRefGoogle Scholar
  26. 26.
    Reik W, Constancia M, Fowden A, Anderson N, Dean W, Ferguson-Smith A, Tycko B, Sibley C (2003) Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 547(1):35–44. doi:10.1113/jphysiol.2002.033274 PubMedCrossRefGoogle Scholar
  27. 27.
    Dommisee J, Tiltman AJ (1992) Placental bed biopsies to placental abruption. Br J Obstet Gynaecol 99:651–654Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Victoria Belogolovkin
    • 1
  • Amina P. Alio
    • 3
  • Alfred K. Mbah
    • 4
  • Heather B. Clayton
    • 3
  • Deanna Wathington
    • 4
  • Hamisu M. Salihu
    • 1
    • 2
    • 4
    • 5
  1. 1.Department of Obstetrics and GynecologyUniversity of South FloridaTampaUSA
  2. 2.Department of Epidemiology and BiostatisticsUniversity of South FloridaTampaUSA
  3. 3.Department of Community and Family HealthUniversity of South FloridaTampaUSA
  4. 4.The Chiles Center for Healthy Mothers and BabiesUniversity of South FloridaTampaUSA
  5. 5.Center for Research and Evaluation, Lawton and Rhea Chiles Center for Healthy Mothers and BabiesUniversity of South FloridaTampaUSA

Personalised recommendations