Archives of Gynecology and Obstetrics

, Volume 280, Issue 3, pp 381–387 | Cite as

The relationship of homocyteine, B12 and folic acid with the bone mineral density of the femur and lumbar spine in Turkish postmenopausal women

  • Nuray Bozkurt
  • Mehmet Erdem
  • Ercan Yılmaz
  • Ahmet Erdem
  • Aydan Biri
  • Ayca Kubatova
  • Murat Bozkurt
Original Article

Abstract

Objective

The relationship of homocyteine, B12 and folic acid with osteoporosis has already been studied in various populations. We compared the important factors in the metabolism of homocysteine, such as homocysteine, B12 and folic acid levels, of Turkish postmenopausal women, and their relationship with the femur and lumbar spine bone mineral density.

Methods

This cross-sectional study was conducted at Gazi University, Department of Obstetrics and Gynecology. The study group consisted of 178 postmenopausal women. Serum homocysteine, folic acid and Vitamin B12 were measured. BMD was measured using DEXA at the right femoral neck and lumbar spine (L1–L4).

Results

Upon evaluation of both the femur and lumbar spine, it was determined that osteoporosis could be associated with a homocysteine level above the median and with a B12 value under the lowest quintile value.

Conclusion

Plasma Hcy and vitamin B12, but not folate levels, were associated with osteoporosis. Future interventional studies are needed to determine methods to reduce Hcy levels with dietary supplements and extra vitamin B12, which will restore bone health and reduce risk of fractures.

Keywords

Homocysteine Folic acid Vitamin B12 Osteoporosis 

Notes

Conflict of interest statement

None.

References

  1. 1.
    Guravitch O, Shimon S (2006) The hematological etiology of osteoporosis. Med Hypotheses 67(4):729–735. doi: 10.1016/j.mehy.2006.03.051 CrossRefGoogle Scholar
  2. 2.
    Lubec B, Fang-Kircher S, Lubec T, Blom HJ, Boers GHJ (1996) Evidence for McKusick’s hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta 1315:159–162PubMedGoogle Scholar
  3. 3.
    Kim GS, Kim CH, Park JY, Lee KU, Park CS (1996) Effects of vitamin B12 on cell proliferation and cellular alkaline phosphatase activity in human bone marrow stromal osteoprogenitor cells and UMR106 osteoblastic cells. Metabolism 45(12):1443–1446. doi: 10.1016/S0026-0495(96)90171-7 PubMedCrossRefGoogle Scholar
  4. 4.
    Goerss JB, Kim CH, Atkinson EJ, Eastell R, O’Fallon WM, Melton LJIII (1992) Risk of fractures in patients with pernicious anemia. J Bone Miner Res 7:573–579PubMedCrossRefGoogle Scholar
  5. 5.
    Stone KL, Bauer DC, Sellmeyer D, Cummings SR (2004) Low serum vitamin B-12 levels are associated with increased hip bone loss in older women: a prospective study. J Clin Endocrinol Metab 89:1217–1221. doi: 10.1210/jc.2003-030074 PubMedCrossRefGoogle Scholar
  6. 6.
    Dhonukshe-Rutten RA, Lips M, de Jong N, Chin APMJ, Hiddink GJ, van Dusseldorp M, De Groot LC, van Staveren WA (2003) Vitamin B-12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men. J Nutr 133:801–807PubMedGoogle Scholar
  7. 7.
    Tucker KL, Hannan MT, Qiao N, Jacques PF, Selhub J, Cupples LA, Kiel DP (2005) Low plasma vitamin B12 associated with lower bone mineral density: the Framingham osteoporosis study. J Bone Miner Res 20(1):152–158PubMedGoogle Scholar
  8. 8.
    Cagnacci A, Baldassari F, Rivolta G, Arangino S, Volpe A (2003) Relation of homocysteine, folate, and vitamin B12 to bone mineral density of postmenopausal women. Bone 33:956–959. doi: 10.1016/j.bone.2003.07.001 PubMedCrossRefGoogle Scholar
  9. 9.
    Golbahar J, Hamidi A, Aminzadeh MA, Omrani GR (2004) Association of plasma folate, plasma total homocysteine, but not methylenetetrahydrofolate reductase C667T polymorphism, with bone mineral density in postmenopausal Iranian women: a cross-sectional study. Bone 35:760–765. doi: 10.1016/j.bone.2004.04.018 PubMedCrossRefGoogle Scholar
  10. 10.
    Browner WS, Malinow MR (1991) Homocyst(e)inaemia and bone density in elderly women. Lancet 338:1470. doi: 10.1016/0140-6736(91)92782-W PubMedCrossRefGoogle Scholar
  11. 11.
    Morris MS, Jacques PF, Selhub J (2005) Relation between homocysteine and B-vitamin status indicators and bone mineral density in older Americans. Bone 37(2):234–242. doi: 10.1016/j.bone.2005.04.017 PubMedCrossRefGoogle Scholar
  12. 12.
    Krumdieck CL, Prince CW (2000) Mechanisms of homocysteine toxicity on connective tissues: implications for the morbidity of aging. J Nutr 130(2S Suppl):365S–368S ReviewPubMedGoogle Scholar
  13. 13.
    Miyao M, Morita H, Hosoi T, Kurihara H, Inoue S, Hoshino S, Shiraki M, Yazaki Y, Ouchi Y (2000) Association of methylenetetrahydrofolate reductase (MTHFR) polymorphism with bone mineral density in postmenopausal Japanese women. Calcif Tissue Int 66(3):190–194. doi: 10.1007/s002230010038 PubMedCrossRefGoogle Scholar
  14. 14.
    Whiting SJ, Draper HH (1981) Effect of a chronic acid load as sulfate or sulfur amino acids on bone metabolism in adult rats. J Nutr 111(10):1721–1726PubMedGoogle Scholar
  15. 15.
    Sakamoto W, Isomura H, Fujie K, Deyama Y, Kato A, Nishihira J, Izumi H (2005) Homocysteine attenuates the expression of osteocalcin but enhances osteopontin in MC3T3-E1 preosteoblastic cells. Biochim Biophys Acta 1740(1):12–16PubMedGoogle Scholar
  16. 16.
    Kim DJ, Koh JM, Lee O, Kim NJ, Lee YS, Kim YS, Park JY, Lee KU, Kim GS (2006) Homocysteine enhances apoptosis in human bone marrow stromal cells. Bone 39(3):582–590. doi: 10.1016/j.bone.2006.03.004 PubMedCrossRefGoogle Scholar
  17. 17.
    Wouters MG, Moorrees MT, van der Mooren MJ, Blom HJ, Boers GH, Schellekens LA, Thomas CM, Eskes TK (1995) Plasma homocysteine and menopausal status. Eur J Clin Invest 25(11):801–805. doi: 10.1111/j.1365-2362.1995.tb01687.x PubMedCrossRefGoogle Scholar
  18. 18.
    Hak AE, Polderman KH, Westendorp IC, Jakobs C, Hofman A, Witteman JC, Stehouwer CD (2000) Increased plasma homocysteine after menopause. Atherosclerosis 149(1):163–168. doi: 10.1016/S0021-9150(99)00321-4 PubMedCrossRefGoogle Scholar
  19. 19.
    Cagnacci A, Generali M, Pirillo D, Baldassari F, Volpe A (2006) Effects of low- or high-dose hormone therapy on fasting and post-methionine homocysteine levels in postmenopausal women. Climacteric 9(5):388–395. doi: 10.1080/13697130600870352 PubMedCrossRefGoogle Scholar
  20. 20.
    van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, de Groot LC, Hofman A, Witteman JC, van Leeuwen JP, Breteler MM, Lips P, Pols HA, Uitterlinden AG (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350(20):2033–2041PubMedCrossRefGoogle Scholar
  21. 21.
    McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, Hannan MT, Cupples LA, Kiel DP (2004) Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 350(20):2042–2049PubMedCrossRefGoogle Scholar
  22. 22.
    Herrmann M, Widmann T, Herrmann W (2005) Homocysteine: a newly recognised risk factor for osteoporosis. Clin Chem Lab Med 43(10):1111–1117. doi: 10.1515/CCLM.2005.194 PubMedCrossRefGoogle Scholar
  23. 23.
    Carmel R, Lau KH, Baylink DJ, Saxena S, Singer FR (1988) Cobalamin and osteoblast-specific proteins. N Engl J Med 319(2):70–75PubMedCrossRefGoogle Scholar
  24. 24.
    Dhonukshe-Rutten RA, van Dusseldorp M, Schneede J, de Groot LC, van Staveren WA (2005) Low bone mineral density and bone mineral content are associated with low cobalamin status in adolescents. Eur J Nutr 44(6):341–347. doi: 10.1007/s00394-004-0531-x PubMedCrossRefGoogle Scholar
  25. 25.
    Melton ME, Kochman ML (1994) Reversal of severe osteoporosis with vitamin B12 and etidronate therapy in a patient with pernicious anemia. Metabolism 43(4):468–469. doi: 10.1016/0026-0495(94)90078-7 PubMedCrossRefGoogle Scholar
  26. 26.
    Jorgensen HL, Madsen JS, Madsen B, Saleh MM, Abrahamsen B, Fenger M, Lauritzen JB (2002) Association of a common allelic polymorphism (C677T) in the methylene tetrahydrofolate reductase gene with a reduced risk of osteoporotic fractures: a case–control study in Danish postmenopausal women. Calcif Tissue Int 71(5):386–392. doi: 10.1007/s00223-001-2126-3 PubMedCrossRefGoogle Scholar
  27. 27.
    Baines M, Kredan MB, Davison A, Higgins G, Taylor W, West C, Fraser WD, Ranganath LR (2007) The association of homocysteine and its determinants MTHFR genotype, folate, vitamin B(12) and vitamin B(6) with bone mineral density in postmenopausal British women. Bone 40:730–736. doi: 10.1016/j.bone.2006.10.008 PubMedCrossRefGoogle Scholar
  28. 28.
    Hong X, Hsu YH, Terwedow H, Tang G, Liu X, Jiang S, Xu X, Xu X (2007) Association of the methylenetetrahydrofolate reductase C677T polymorphism and fracture risk in Chinese postmenopausal women. Bone 40:737–742. doi: 10.1016/j.bone.2006.09.031 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nuray Bozkurt
    • 1
    • 3
  • Mehmet Erdem
    • 1
  • Ercan Yılmaz
    • 1
  • Ahmet Erdem
    • 1
  • Aydan Biri
    • 1
  • Ayca Kubatova
    • 1
  • Murat Bozkurt
    • 2
  1. 1.Department of Gynecology and Obstetrics, Faculty of MedicineGazi UniversityBesevler, AnkaraTurkey
  2. 2.3rd Orthopaedics and Traumatology ClinicDiskapi Yıldırım Beyazit Training and Research HospitalAnkaraTurkey
  3. 3.AnkaraTurkey

Personalised recommendations