Archives of Gynecology and Obstetrics

, Volume 279, Issue 6, pp 803–807 | Cite as

Baseline characteristics and prevalence of HPV 6, 11, 16, 18 in young German women participating in phase III clinical trials of a quadrivalent HPV (6/11/16/18) vaccine

  • Elisabeth Barthell
  • Linn Woelber
  • Karin Hellner
  • Birka Camerer
  • Friederike Gieseking
  • Maik Hauschild
  • Ioannis Mylonas
  • Klaus Friese
  • Heather L. Sings
  • Radha Railkar
  • Christine Gause
  • Eliav Barr
Original Article

Abstract

Introduction

As limited data among German women exist about HPV, Chlamydia trachomatis (CT) and Neisseria gonorrhoeae, we report the prevalence of these genital infections and general baseline demographics of the young German women enrolled in the phase III trials of the quadrivalent HPV vaccine.

Materials and methods

German females (n = 437; 9–23 years) were recruited among 3 international phase 3 studies of an HPV-6/11/16/18 vaccine. We present baseline characteristics, prevalence of HPV-6/11/16/18 and, for women aged 16–23, abnormal cervical cytology and sexually transmitted diseases.

Results

Chlamydia trachomatis and Neisseria gonorrhoeae prevalence was 5 and 0.3%, respectively. Approximately 17% of participants had HPV-6, 11, 16, or 18 DNA or antibodies. All subjects <17 years were naïve to the four vaccine types.

Discussion

The results of the vaccine trials have demonstrated that it is worth administering prophylactic HPV vaccines before sexual debut; however, none of these sexually active German women were positive to all four types and most were positive to only one type. Thus, all women had the potential to benefit from vaccination with a quadrivalent HPV vaccine.

Keywords

HPV prevalence Prophylactic quadrivalent HPV vaccine Cervical cytology Chlamydia trachomatis Neisseria gonorrhoeae Female 

Notes

Acknowledgments

Merck Research Laboratories, a division of Merck and Co., Inc., funded this study in its entirety. A portion of these data were presented at the 2007 Joint Annual Bavarian-Austrian Congress on Gynaecology and Obstetrics. Drs Barthell, Woelber, Hellner, Camerer, Gieseking, Hauschild, and Friese report having received funding from Merck through their respective institutions to conduct clinical trials of this vaccine. Drs Sings and Barr are employees of Merck and Co., Inc. and hold stock and/or stock options. Dr Barthell has received lecture fees from speaking at the invitation of Sanofi-Pasteur Merck Sharp & Dohme.

Conflict of interest statement

Barthell, Woelber, Hellner, Camerer, Gieseking, Hauschild, and Friese report having received funding from Merck through their respective institutions to conduct clinical trials of this vaccine. Drs Sings and Barr are employees of Merck and Co., Inc. and hold stock and/or stock options. Dr. Barthell has received lecture fees from speaking at the invitation of Sanofi-Pasteur Merck Sharp & Dohme. Merck Research Laboratories funded this study in its entirety.

References

  1. 1.
    Bosch FX, Manos MM, Muñoz N et al (1995) Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J Natl Cancer Inst 87:796–802. doi:10.1093/jnci/87.11.796 PubMedCrossRefGoogle Scholar
  2. 2.
    Gissmann L, zur Hausen H (1980) Partial characterization of viral DNA from human genital warts (condylomata acuminata). Int J Cancer 25:605–609. doi:10.1002/ijc.2910250509 PubMedCrossRefGoogle Scholar
  3. 3.
    Derkay CS, Darrow DH (2000) Recurrent respiratory papillomatosis of the larynx: current diagnosis and treatment. Otolaryngol Clin North Am 33:1127–1142. doi:10.1016/S0030-6665(05)70270-X PubMedCrossRefGoogle Scholar
  4. 4.
    Hildesheim A, Herrero R, Wacholder S et al (2007) Effect of human papillomavirus 16/18 L1 virus like particle vaccine among young women with preexisting infection: a randomized trial. JAMA 298:743–753. doi:10.1001/jama.298.7.743 PubMedCrossRefGoogle Scholar
  5. 5.
    Garland SM, Hernandez-Avila M, Wheeler CM et al (2007) Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med 356:1928–1943. doi:10.1056/NEJMoa061760 PubMedCrossRefGoogle Scholar
  6. 6.
    FUTURE II Study Group (2007) Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 356:1915–1927. doi:10.1056/NEJMoa061741 CrossRefGoogle Scholar
  7. 7.
    Delere Y, Meyer C, Reiter S (2007) Universal immunisation with human papillomavirus (HPV) vaccine among females aged 12–17 recommended in Germany. Euro Surveill 12:E0704052Google Scholar
  8. 8.
    Committee on Adolescent Health Care, ACOG Working Group on Immunization (2006) ACOG Committee Opinion No. 344: Human papillomavirus vaccination. Obstet Gynecol 108:699–705Google Scholar
  9. 9.
    Garland SM, Steben M, Hernandez-Avila M et al (2007) Noninferiority of antibody response to human papillomavirus type 16 in subjects vaccinated with monovalent and quadrivalent L1 virus-like particle vaccines. Clin Vaccine Immunol 14:792–795. doi:10.1128/CVI.00478-06 PubMedCrossRefGoogle Scholar
  10. 10.
    Block SL, Nolan T, Sattler C et al (2006) Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics 118:2135–2145. doi:10.1542/peds.2006-0461 PubMedCrossRefGoogle Scholar
  11. 11.
    Bryan J, Taddeo F, Skulsky D et al (2006) Detection of specific human papillomavirus types in paraffin-embedded sections of cervical carcinomas. J Med Virol 78:117–124. doi:10.1002/jmv.20512 PubMedCrossRefGoogle Scholar
  12. 12.
    Solomon D, Davey D, Kurman R et al (2002) The 2001 Bethesda system: terminology for reporting results of cervical cytology. JAMA 287:2114–2119. doi:10.1001/jama.287.16.2114 PubMedCrossRefGoogle Scholar
  13. 13.
    Dias D, Van Doren J, Schlottmann S et al (2005) Optimization and validation of a multiplexed luminex assay to quantify antibodies to neutralizing epitopes on human papillomavirus 6, 11, 16 and 18. Clin Diag Lab Immunol 12:959–969. doi:10.1128/CDLI.12.8.959-969.2005 CrossRefGoogle Scholar
  14. 14.
    Paavonen J (2008) Baseline demographic characteristics of subjects enrolled in international quadrivalent HPV (types 6/11/16/18) vaccine clinical trials. Curr Med Res Opin 24:1623–1634. doi:10.1185/03007990802068151 PubMedCrossRefGoogle Scholar
  15. 15.
    de Villiers EM, Wagner D, Schnieder A et al (1992) Human papillomavirus DNA in women without and with cytological abnormalities: results of a 5-year follow-up study. Gynecol Oncol 44:33–39. doi:10.1016/0090-8258(92)90008-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Schneider A, Hoyer H, Lotz B et al (2000) Screening for high-grade cervical intra-epithelial neoplasia and cancer by testing for high-risk HPV, routine cytology or colposcopy. Int J Cancer 89:529–534. doi:10.1002/1097-0215(20001120)89:6<529::AID-IJC11>3.0.CO;2-GPubMedCrossRefGoogle Scholar
  17. 17.
    Paavonen J, Jenkins D, Bosch FX et al (2007) Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369:2161–2170. doi:10.1016/S0140-6736(07)60946-5 PubMedCrossRefGoogle Scholar
  18. 18.
    Clad A, Prillwitz J, Hintz KC et al (2001) Discordant prevalence of Chlamydia trachomatis in asymptomatic couples screened using urine ligase chain reaction. Eur J Clin Microbiol Infect Dis 20:324–328PubMedCrossRefGoogle Scholar
  19. 19.
    Koch J, Kirschner W, Schaefer A (1997) Bestimmung der Praevalenz genitaler HPV- und Chlamydia trachomatis-Infektionen in einem repraesentativen Querschnitt der weiblichen Normalbevoelkerung in Berlin. Infektionsepidemiol Forsch 2:1–7Google Scholar
  20. 20.
    Griesinger G, Gille G, Klapp C et al (2007) Sexual behaviour and Chlamydia trachomatis infections in German female urban adolescents, 2004. Clin Microbiol Infect 13:436–439. doi:10.1111/j.1469-0691.2006.01680.x PubMedCrossRefGoogle Scholar
  21. 21.
  22. 22.
    Madeleine MM, Anttila T, Schwartz SM et al (2007) Risk of cervical cancer associated with Chlamydia trachomatis antibodies by histology, HPV type and HPV cofactors. Int J Cancer 120:650–655. doi:10.1002/ijc.22325 PubMedCrossRefGoogle Scholar
  23. 23.
    Franceschi S, Smith JS, van den BA et al (2007) Cervical infection with Chlamydia trachomatis and Neisseria gonorrhoeae in women from ten areas in four continents. A cross-sectional study. Sex Transm Dis 34:563–569PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Elisabeth Barthell
    • 1
  • Linn Woelber
    • 2
  • Karin Hellner
    • 3
    • 4
  • Birka Camerer
    • 1
  • Friederike Gieseking
    • 2
  • Maik Hauschild
    • 5
  • Ioannis Mylonas
    • 1
    • 7
  • Klaus Friese
    • 1
  • Heather L. Sings
    • 6
  • Radha Railkar
    • 6
  • Christine Gause
    • 6
  • Eliav Barr
    • 6
  1. 1.First Department of Obstetrics and Gynaecology – Klinikum InnenstadtLudwig-Maximilian-University MunichMunichGermany
  2. 2.Universitaetsklinik Hamburg-EppendorfHamburgGermany
  3. 3.Charite University Hospital of BerlinBerlinGermany
  4. 4.The Channing Laboratory, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  5. 5.Frauenklinik und Brustzentrum RheinfeldenRheinfeldenGermany
  6. 6.Merck Research LaboratoriesWestpointUSA
  7. 7.MunichGermany

Personalised recommendations