Advertisement

Archives of Dermatological Research

, Volume 310, Issue 9, pp 751–758 | Cite as

Decreased expression of G-protein-coupled receptors GPR43 and GPR109a in psoriatic skin can be restored by topical application of sodium butyrate

  • Alicja Krejner
  • Anika Bruhs
  • Ulrich Mrowietz
  • Ulrike Wehkamp
  • Thomas Schwarz
  • Agatha Schwarz
Original Paper
  • 146 Downloads

Abstract

The G-protein-coupled receptors GPR43 and GPR109a are known to play an important role in mediating anti-inflammatory and anti-cancer functions in the gut. Short-chain fatty acids, such as sodium butyrate (SB), are activators of GPR43 and GPR109a and thereby promote anti-inflammatory effects. The present study aimed to examine the expression of these receptors and their reaction to SB in psoriasis. Lesional and non-lesional biopsies of 6 psoriasis patients and of 4 controls were obtained and stained for GPR109a and GPR43. Ex vivo stimulation with SB was performed on fresh biopsy material. Lesional and non-lesional psoriatic skin showed a decreased expression of GPR109a and GPR43 on keratinocytes in comparison with control skin. Topical application of SB was able to increase the low-level expression of both receptors. The data suggest that SB by restoring the impaired expression of GPR109a and GPR43 might exert anti-inflammatory effects and may be utilized as a topical tool for the treatment of psoriasis, which has to be proven in future clinical trials.

Keywords

Psoriasis G-protein-coupled receptor Sodium butyrate Inflammation Treatment 

Abbreviations

GPR

G-protein-coupled receptor(s)

SB

Sodium butyrate

SCFA

Short-chain fatty acids

Treg

Regulatory T cell(s)

Notes

Acknowledgements

We thank Ms. Katharina Pallasch for excellent technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Girish V, Vijayalakshmi A (2004) Affordable image analysis using NIH Image/ImageJ. Indian J Cancer 41(1):47PubMedGoogle Scholar
  2. 2.
    Andrés RM, Montesinos MC, Navalón P, Payá M, Terencio MC (2013) NF-κB and STAT3 inhibition as a therapeutic strategy in psoriasis: in vitro and in vivo effects of BTH. J Invest Dermatol 133:2362–2371CrossRefPubMedGoogle Scholar
  3. 3.
    Asadullah K, Sabat R, Friedrich M, Volk HD, Sterry W (2004) Interleukin-10: an important immunoregulatory cytokine with major impact on psoriasis. Curr Drug Targets Inflamm Allergy 3:185–912CrossRefPubMedGoogle Scholar
  4. 4.
    Bergboer JGM, Zeeuwen PLJM, Schalkwijk J (2012) Genetics of psoriasis: evidence for epistatic interaction between skin barrier abnormalities and immune deviation. J Invest Dermatol 132:2320–2331CrossRefPubMedGoogle Scholar
  5. 5.
    Bermudez Y, Benavente CA, Meyer RG, Coyle WR, Jacobson MK, Jacobson EL (2011) Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation. PLoS One 6:e20487CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bhatt B, Zeng P, Zhu H, Sivaprakasam S, Li S, Xiao H, Dong L, Shiao P, Kolhe R, Patel N, Li H, Levy-Bercowski D, Ganapathy V, Singh N (2018) Gpr109a limits microbiota-induced IL-23 production to constrain ILC3-mediated colonic inflammation. J Immunol 200:2905–2914CrossRefPubMedGoogle Scholar
  7. 7.
    Boehncke WH (2018) Systemic inflammation and cardiovascular comorbidity in psoriasis patients: causes and consequences. Front Immunol 9:579CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Boesmans L, Ramakers M, Arijs I, Windey K, Vanhove W, Schuit F, Rutgeerts P, Verbeke K, De Preter V (2015) Inflammation-induced downregulation of butyrate uptake and oxidation is not caused by a reduced gene expression. J Cell Physiol 230:418–426CrossRefPubMedGoogle Scholar
  9. 9.
    Chen G, Ran X, Li B, Li Y, He D, Huang B, Fu S, Liu J, Wang W (2018) Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 30:317–325CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Codoñer FM, Ramírez-Bosca A, Climent E, Carrión-Gutierrez M, Guerrero M, Pérez-Orquín JM, de la Parte JH, Genovés S, Ramón D, Navarro-López V, Chenoll E (2018) Gut microbial composition in patients with psoriasis. Sci Rep 8:3812CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN, Lan L, Singh N, Martin PM, Hawthorn L, Prasad PD, Ganapathy V, Thangaraju M (2014) The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res 74:1166–1178CrossRefPubMedGoogle Scholar
  12. 12.
    Ghoreschi K, Thomas P, Breit S, Dugas M, Mailhammer R, van Eden W, van der Zee R, Biedermann T, Prinz J, Mack M, Mrowietz U, Christophers E, Schlöndorff D, Plewig G, Sander CA, Röcken M (2003) Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med 9:40–46CrossRefPubMedGoogle Scholar
  13. 13.
    Iraporda C, Errea A, Romanin DE, Cayet D, Pereyra E, Pignataro O, Sirard JC, Garrote GL, Abraham AG, Rumbo M (2015) Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220:1161–1169CrossRefPubMedGoogle Scholar
  14. 14.
    Jeninga EH, Bugge A, Nielsen R, Kersten S, Hamers N, Dani C, Wabitsch M, Berger R, Stunnenberg HG, Mandrup S, Kalkhoven E (2009) Peroxisome proliferator-activated receptor gamma regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81). J Biol Chem 284:26385–26393CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim CH (2018) Immune regulation by microbiome metabolites. Immunology 154:220–229CrossRefPubMedGoogle Scholar
  16. 16.
    Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145:396–406CrossRefPubMedGoogle Scholar
  17. 17.
    Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517CrossRefPubMedGoogle Scholar
  18. 18.
    Langan EA, Griffiths CEM, Solbach W, Knobloch JK, Zillikens D, Thaçi D (2018) The role of the microbiome in psoriasis: moving from disease description to treatment selection? Br J Dermatol 178:1020–1027CrossRefPubMedGoogle Scholar
  19. 19.
    Mrowietz U, Morrison PJ, Suhrkamp I, Kumanova M, Clement B (2018) The pharmacokinetics of fumaric acid esters reveal their in vivo effects. Trends Pharmacol Sci 39:1–12CrossRefPubMedGoogle Scholar
  20. 20.
    Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, Kasper LH (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 83:6041–6050CrossRefGoogle Scholar
  21. 21.
    Ochoa-Repáraz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL, Kasper LH (2010) A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 3:487–495CrossRefPubMedGoogle Scholar
  22. 22.
    Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A (2011) IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol 186:1495–1502CrossRefPubMedGoogle Scholar
  23. 23.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schwarz A, Bruhs A, Schwarz T (2017) The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. J Invest Dermatol 137:855–864CrossRefPubMedGoogle Scholar
  25. 25.
    Shimoura N, Nagai H, Fujiwara S, Jimbo H, Yoshimoto T, Nishigori C (2017) Interleukin (IL)-18, cooperatively with IL-23, induces prominent inflammation and enhances psoriasis-like epidermal hyperplasia. Arch Dermatol Res 309:315–321CrossRefPubMedGoogle Scholar
  26. 26.
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tang H, Lu JY, Zheng X, Yang Y, Reagan JD (2008) The psoriasis drug monomethylfumarate is a potent nicotinic acid receptor agonist. Biochem Biophys Res Commun 375:562–565CrossRefPubMedGoogle Scholar
  28. 28.
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alicja Krejner
    • 1
    • 2
  • Anika Bruhs
    • 2
  • Ulrich Mrowietz
    • 2
  • Ulrike Wehkamp
    • 2
  • Thomas Schwarz
    • 2
  • Agatha Schwarz
    • 2
  1. 1.Department of Histology and EmbryologyMedical University of WarsawWarsawPoland
  2. 2.Department of DermatologyUniversity Medical Center Schleswig-Holstein, Campus KielKielGermany

Personalised recommendations