Advertisement

Archives of Dermatological Research

, Volume 308, Issue 1, pp 21–29 | Cite as

Pulsed electromagnetic field (PEMF) promotes collagen fibre deposition associated with increased myofibroblast population in the early healing phase of diabetic wound

  • Ming-Chun Choi
  • Kwok-Kuen Cheung
  • Xiaohui Li
  • Gladys Lai-Ying Cheing
Original Paper

Abstract

The present study evaluated the effects of PEMF on collagen fibre deposition, collagen fibril alignment and collagen fibre orientation. The potential relationships between collagen fibre deposition and myofibroblast population in diabetic wound healing were also examined. Forty young male streptozotocin-induced diabetic Sprague–Dawley rats were randomly assigned to PEMF group or control group. 2 cm × 2 cm square wounds were made at their back. The PEMF group received daily exposure of PEMF to the wounds, while control group was handled in the same manner except that the PEMF device was not activated. Wound tissues harvested on post-wounding day 7, 10 and 14 were fixed, processed and sectioned. The abundance, fibril alignment and fibre orientation of type I collagen were quantified with picro-sirius polarization method and image analysis software (Nikon NIS Element AR). Myofibroblast population data were adopted from our previous study. Correlation between myofibroblast population and collagen fibre deposition was examined. There was significantly greater abundance of type I collagen fibre in the PEMF group than in the control on day 7 (P = .013), but not on day 10 or 14. No significant between-group differences were found in collagen fibril alignment and collagen fibre orientation at any measured time points. Positive correlation was found between collagen fibre deposition and myofibroblast population only on day 7 (r = .729, P = .007). In conclusion, PEMF can significantly increase collagen fibre in the early phase of diabetic wound healing, which is associated with the enhancement of myofibroblast population.

Keywords

Type I collagen Diabetic wound Pulsed electromagnetic fields Myofibroblast Rat model 

Notes

Acknowledgments

The authors thank the Centralized Animal Facilities of our university for the general animal holding services. This study was funded by the General Research Fund from the Research Grants Council of the Hong Kong Special Administrative Region Government (POLYU 5600/11 M).

References

  1. 1.
    Ahmadian S, Zarchi SR, Bolouri B (2006) Effects of extremely-low-frequency pulsed electromagnetic fields on collagen synthesis in rat skin. Biotechnol Appl Biochem 43(Pt 2):71–75PubMedGoogle Scholar
  2. 2.
    Aumailley M, Gayraud B (1998) Structure and biological activity of the extracellular matrix. J Mol Med 76(3–4):253–265PubMedCrossRefGoogle Scholar
  3. 3.
    Black E, Vibe-Petersen J, Jorgensen LN, Madsen SM, Ågren MS, Holstein PE, Perrild H, Gottrup F (2003) Decrease of collagen deposition in wound repair in type 1 diabetes independent of glycemic control. Arch Surg 138(1):34–40PubMedCrossRefGoogle Scholar
  4. 4.
    Bornstein P, Traub W (1979) The chemistry and biology of collagen. In: Neurath H, Hill RL (eds) The Proteins, vol 4., Academic PressOrlando, FL, pp 411–633CrossRefGoogle Scholar
  5. 5.
    Boulton AJM, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J (2005) The global burden of diabetic foot disease. Lancet 366(9498):1719–1724PubMedCrossRefGoogle Scholar
  6. 6.
    Callaghan MJ, Chang EI, Seiser N, Aarabi S, Ghali S, Kinnucan ER, Simon BJ, Gurtner GC (2008) Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast Reconstr Surg 121(1):130–141PubMedCrossRefGoogle Scholar
  7. 7.
    Cheing GLY, Li X, Huang L, Kwan RLC, Cheung KK (2014) Pulsed electromagnetic fields (PEMF) promote early wound healing and myofibroblast proliferation in diabetic rats. Bioelectromagnetics 35(3):161–169. doi: 10.1002/bem.21832 PubMedCrossRefGoogle Scholar
  8. 8.
    Chung TY, Peplow PV, Baxter GD (2010) Testing photobiomodulatory effects of laser irradiation on wound healing: development of an improved model for dressing wounds in mice. Photomed Laser Surg 28(5):589–596. doi: 10.1089/pho.2009.2641 PubMedCrossRefGoogle Scholar
  9. 9.
    Desmoulière A, Darby IA, Gabbiani G (2003) Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest 83(12):1689–1707PubMedCrossRefGoogle Scholar
  10. 10.
    Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9(1):283–289PubMedCrossRefGoogle Scholar
  11. 11.
    Faglia E, Favales F, Morabito A (2001) New ulceration, new major amputation, and survival rates in diabetic subjects hospitalized for foot ulceration from 1990 to 1993: a 6.5-year follow-up. Diabetes Care 24(1):78–83. doi: 10.2337/diacare.24.1.78 PubMedCrossRefGoogle Scholar
  12. 12.
    Gasser TC, Gallinetti S, Xing X, Forsell C, Swedenborg J, Roy J (2012) Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics. Acta Biomater 8(8):3091–3103. doi: 10.1016/j.actbio.2012.04.044 PubMedCrossRefGoogle Scholar
  13. 13.
    Ghanassia E, Villon L, Thuan dit Dieudonne JF, Boegner C, Avignon A, Sultan A (2008) Long-term outcome and disability of diabetic patients hospitalized for diabetic foot ulcers a 65-year follow-up study. Diabetes Care 31(7):1288–1292PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Goudarzi I, Hajizadeh S, Salmani ME, Abrari K (2010) Pulsed electromagnetic fields accelerate wound healing in the skin of diabetic rats. Bioelectromagnetics 31(4):318–323PubMedGoogle Scholar
  15. 15.
    Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180(4):1340–1355PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ishiguro S, Akasaka Y, Kiguchi H, Suzuki T, Imaizumi R, Ishikawa Y, Ito K, Ishii T (2009) Basic fibroblast growth factor induces down-regulation of α-smooth muscle actin and reduction of myofibroblast areas in open skin wounds. Wound Repair Regen 17(4):617–625. doi: 10.1111/j.1524-475X.2009.00511.x PubMedCrossRefGoogle Scholar
  17. 17.
    Jeffcoate WJ, Harding KG (2003) Diabetic foot ulcers. Lancet 361(9368):1545–1551PubMedCrossRefGoogle Scholar
  18. 18.
    Jing D, Cai J, Shen G, Huang J, Li F, Li J, Lu L, Luo E, Xu Q (2011) The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporos Int 22(6):1885–1895. doi: 10.1007/s00198-010-1447-3 PubMedCrossRefGoogle Scholar
  19. 19.
    Khouw IMSL, van Wachem PB, Plantinga JA, Vujaskovic Z, JB Wissink M, de Leij LFMH, van Luyn MJA (1999) TGF-β and bFGF affect the differentiation of proliferating porcine fibroblasts into myofibroblasts in vitro. Biomaterials 20(19):1815–1822. doi: 10.1016/S0142-9612(99)00077-0
  20. 20.
    Kiernan JA (2002) Collagen type I staining. Biotech Histochem 77:231PubMedGoogle Scholar
  21. 21.
    Kwan RLC, Wong WC, Yip SL, Chan KL, Zheng YP, Cheing GLY (2015) Pulsed electromagnetic field therapy promotes healing and microcirculation of chronic diabetic foot ulcers: a pilot study. Adv Skin Wound Care 28(5):212–219. doi: 10.1097/01.asw.0000462012.58911.53 PubMedCrossRefGoogle Scholar
  22. 22.
    Lacle A, Valero-Juan LF (2012) Diabetes-related lower-extremity amputation incidence and risk factors: a prospective seven-year study in Costa Rica. Rev Panam Salud Publica 32(3):192–198PubMedCrossRefGoogle Scholar
  23. 23.
    Lee EWC, Maffulli N, Li CK, Chan KM (1997) Pulsed magnetic and electromagnetic fields in experimental achilles tendonitis in the rat: a prospective randomized study. Arch Phys Med Rehabil 78(4):399–404. doi: 10.1016/S0003-9993(97)90232-X PubMedCrossRefGoogle Scholar
  24. 24.
    Lei T, Jing D, Xie K, Jiang M, Li F, Cai J, Wu X, Tang C, Xu Q, Liu J (2013) Therapeutic effects of 15 Hz pulsed electromagnetic field on diabetic peripheral neuropathy in streptozotocin-treated rats. PLoS One 8(4):e61414PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Matic M, Lazetic B, Poljacki M, Djuran V, Matic A, Gajinov Z (2009) Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals. Lasers Med Sci 24(3):321–327PubMedCrossRefGoogle Scholar
  26. 26.
    Melis P, Noorlander ML, van der Horst CM, van Noorden CJ (2002) Rapid alignment of collagen fibers in the dermis of undermined and not undermined skin stretched with a skin-stretching device. Plast Reconstr Surg 109(2):674–682PubMedCrossRefGoogle Scholar
  27. 27.
    Milgram J, Shahar R, Levin-Harrus T, Kass P (2004) The effect of short, high intensity magnetic field pulses on the healing of skin wounds in rats. Bioelectromagnetics 25(4):271–277PubMedCrossRefGoogle Scholar
  28. 28.
    Montes G, Junqueira L (1991) The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Mem Inst Oswaldo Cruz 86:1–11PubMedCrossRefGoogle Scholar
  29. 29.
    Musaev AV, Guseinova SG, Imamverdieva SS (2003) The use of pulsed electromagnetic fields with complex modulation in the treatment of patients with diabetic polyneuropathy. Neurosci Behav Physiol 33(8):745–752. doi: 10.1023/A:1025184912494 PubMedCrossRefGoogle Scholar
  30. 30.
    Noorlander ML, Melis P, Jonker A, Van Noorden CJ (2002) A quantitative method to determine the orientation of collagen fibers in the dermis. J Histochem Cytochem 50(11):1469–1474PubMedCrossRefGoogle Scholar
  31. 31.
    Ottani V, Raspanti M, Ruggeri A (2001) Collagen structure and functional implications. Micron 32(3):251–260PubMedCrossRefGoogle Scholar
  32. 32.
    Pan Y, Dong Y, Hou W, Ji Z, Zhi K, Yin Z, Wen H, Chen Y (2013) Effects of PEMF on microcirculation and angiogenesis in a model of acute hindlimb ischemia in diabetic rats. Bioelectromagnetics 34(3):180–188. doi: 10.1002/bem.21755 PubMedCrossRefGoogle Scholar
  33. 33.
    Patino O, Grana D, Bolgiani A, Prezzavento G, Mino J, Merlo A, Benaim F (1996) Pulsed electromagnetic fields in experimental cutaneous wound healing in rats. J Burn Care Rehabil 17(6 Pt 1):528–531PubMedGoogle Scholar
  34. 34.
    Schäffer MR, Tantry U, Efron PA, Ahrendt GM, Thornton FJ, Barbul A (1997) Diabetes-impaired healing and reduced wound nitric oxide synthesis: a possible pathophysiologic correlation. Surgery 121(5):513–519. doi: 10.1016/S0039-6060(97)90105-7 PubMedCrossRefGoogle Scholar
  35. 35.
    Singh N, Armstrong DG, Lipsky BA (2005) Preventing foot ulcers in patients with diabetes. JAMA 293(2):217–228. doi: 10.1001/jama.293.2.217 PubMedCrossRefGoogle Scholar
  36. 36.
    Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176(2):26S–38SPubMedCrossRefGoogle Scholar
  37. 37.
    Su Z, Yin J, Wang T, Sun Y, Ni P, Ma R, Zhu H, Zheng D, Shen H, Xu W, Xu H (2014) Up-regulated HMGB1 in EAM directly led to collagen deposition by a PKCβ/Erk1/2-dependent pathway: cardiac fibroblast/myofibroblast might be another source of HMGB1. J Cell Mol Med 18(9):1740–1751. doi: 10.1111/jcmm.12324 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, Gan J, Simon B, Hopper RA, Levine JP (2004) Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J 18(11):1231–1233PubMedGoogle Scholar
  39. 39.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363PubMedCrossRefGoogle Scholar
  40. 40.
    Vedrenne N, Coulomb B, Danigo A, Bonté F, Desmoulière A (2012) The complex dialogue between (myo)fibroblasts and the extracellular matrix during skin repair processes and ageing. Pathol Biol (Paris) 60(1):20–27. doi: 10.1016/j.patbio.2011.10.002 CrossRefGoogle Scholar
  41. 41.
    Weintraub MI, Herrmann DN, Smith AG, Backonja MM, Cole SP (2009) Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch Phys Med Rehabil 90(7):1102–1109. doi: 10.1016/j.apmr.2009.01.019 PubMedCrossRefGoogle Scholar
  42. 42.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang K, Rekhter MD, Gordon D, Phan SH (1994) Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol 145(1):114–125PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ming-Chun Choi
    • 1
  • Kwok-Kuen Cheung
    • 1
  • Xiaohui Li
    • 1
  • Gladys Lai-Ying Cheing
    • 1
  1. 1.Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong Kong SARChina

Personalised recommendations