Advertisement

Archives of Dermatological Research

, Volume 307, Issue 1, pp 39–48 | Cite as

Development of a cumulative irritation model for incontinence-associated dermatitis

  • J. Larner
  • H. Matar
  • V. S. Goldman
  • R. P. Chilcott
Original Paper

Abstract

Incontinence-associated dermatitis (IAD) is a painful yet preventable form of cumulative skin irritation prevalent amongst those with limited movement. Consequently, it has a significant impact on the quality of life for those affected as well as substantial cost implications. Prevention and intervention is typically through good skin hygiene regimes and regular use of barrier products. In this paper, we describe the development of an in vivo model of IAD in healthy volunteers by occluded application of alkaline synthetic urine to the volar aspect of volunteer’s forearms for 6 h per day over a five-day period to reproduce the moist and irritant conditions causative of IAD. Irritation was assessed and quantified on a daily basis by a series of non-invasive biophysical measurements and compared to a contralateral saline-treated (control) site. Dermal irritation was assessed by subjective (visual) and objective measurements (laser Doppler and polarisation spectroscopic imaging, infrared thermography, skin reflectance spectroscopy, transepidermal water loss and skin surface pH). The provocation of reproducible, cumulative skin irritation was successfully demonstrated and quantified. This five-day model of irritation is considered appropriate for the initial clinical assessment of topical products to prevent or treat IAD.

Keywords

Dermatitis Urine Biophysical instrument TEWL Skin reflectance spectroscopy Laser Doppler imaging Thermal imaging Tissue viability imaging 

Notes

Acknowledgments

This study was funded by Bracco Diagnostics Inc. The authors would also like to thank Dr. John Skamarauskas for assistance with the analysis of TiVi images from the 5 day study, Professors Fabrizio Schifano and Ken Farrington for clinical support and Dr Richard Amlôt for statistical advice.

References

  1. 1.
    Agner T (1992) Noninvasive measuring methods for the investigation of irritant patch test reactions. A study of patients with hand eczema, atopic dermatitis and controls. Acta Derm Venereol Suppl 173:1–26Google Scholar
  2. 2.
    Aly R, Shirley C, Cunico B, Maibach HI (1978) Effect of prolonged occlusion on the microbial flora, pH, carbon dioxide and transepidermal water loss on human skin. J Investig Dermatol 71(6):378–381. doi: 10.1111/1523-1747.ep12556778 PubMedCrossRefGoogle Scholar
  3. 3.
    Basketter DA (2009) The human repeated insult patch test in the 21st century: a commentary. Cutan Ocul Toxicol 28(2):49–53. doi: 10.1080/15569520902938032 PubMedCrossRefGoogle Scholar
  4. 4.
    Beeckman D, Schoonhoven L, Verhaeghe S, Heyneman A, Defloor T (2009) Prevention and treatment of incontinence-associated dermatitis: literature review. J Adv Nurs 65(6):1141–1154. doi: 10.1111/j.1365-2648.2009.04986.x PubMedCrossRefGoogle Scholar
  5. 5.
    Beeckman D, Verhaeghe S, Defloor T, Schoonhoven L, Vanderwee K (2011) A 3-in-1 perineal care washcloth impregnated with dimethicone 3 % versus water and pH neutral soap to prevent and treat incontinence-associated dermatitis: a randomized, controlled clinical trial. J Wound Ostomy Cont Nurs 38(6):627–634. doi: 10.1097/WON.0b013e31822efe52 CrossRefGoogle Scholar
  6. 6.
    Beeckman D, Woodward S, Gray M (2011) Incontinence-associated dermatitis: step-by-step prevention and treatment. Br J Community Nurs 16(8):382–389PubMedCrossRefGoogle Scholar
  7. 7.
    Beldon P (2012) Incontinence-associated dermatitis: protecting the older person. Br J Nurs 21(7):402 404–407PubMedCrossRefGoogle Scholar
  8. 8.
    Bliss DZ, Savik K, Thorson MAL, Ehman SJ, Lebak K, Beilman G (2011) Incontinence-associated dermatitis in critically ill adults: time to development, severity, and risk factors. J Wound Ostomy Cont Nurs 38(4):433–445. doi: 10.1097/WON.0b013e318220b703 CrossRefGoogle Scholar
  9. 9.
    Campbell JL, Coyer FM, Osborne SR (2014) Incontinence-associated dermatitis: a cross-sectional prevalence study in the Australian acute care hospital setting. Int Wound J. doi: 10.1111/iwj.12322 Google Scholar
  10. 10.
    Celsus AC (0025) De medicina. Self publishedGoogle Scholar
  11. 11.
    Chilcott RP, Dalton CH, Emmanuel AJ, Allen CE, Bradley ST (2002) Transepidermal water loss does not correlate with skin barrier function in vitro. J Investig Dermatol 118(5):871–875. doi: 10.1046/j.1523-1747.2002.01760.x PubMedCrossRefGoogle Scholar
  12. 12.
    Chilcott RP, Farrar R (2000) Biophysical measurements of human forearm skin in vivo: effects of site, gender, chirality and time. Skin Res Technol 6(2):64–69PubMedCrossRefGoogle Scholar
  13. 13.
    Chilcott RP, Patel A, Ashley Z, Hughes JN, Parkes JA (2002) The effects of chemical damage on TEWL. In: Markes R, J-L L, Voefeli R (eds). London, pp 275–285Google Scholar
  14. 14.
    Clemmensen A, Andersen F, Petersen TK, Kalden H, Melgaard A, Andersen KE (2008) The irritant potential of n-propanol (nonanoic acid vehicle) in cumulative skin irritation: a validation study of two different human in vivo test models. Skin Res Technol 14(3):277–286. doi: 10.1111/j.1600-0846.2008.00291.x PubMedCrossRefGoogle Scholar
  15. 15.
    Corcoran E, Woodward S (2013) Incontinence-associated dermatitis in the elderly: treatment options. Br J Nurs 22(8):450–457PubMedCrossRefGoogle Scholar
  16. 16.
    Ehlers C, Ivens UI, Møller ML, Senderovitz T, Serup J (2001) Comparison of two pH meters used for skin surface pH measurement: the pH meter ‘pH900’ from Courage & Khazaka versus the pH meter ‘1140’ from Mettler Toledo. Skin Res Technol 7(2):84–89PubMedCrossRefGoogle Scholar
  17. 17.
    Farage MA, Miller KW, Berardesca E, Maibach HI (2009) Clinical implications of aging skin: cutaneous disorders in the elderly. Am J Clin Dermatol 10(2):73–86PubMedCrossRefGoogle Scholar
  18. 18.
    Gray M (2010) Optimal management of incontinence-associated dermatitis in the elderly. Am J Clin Dermatol 11(3):201–210. doi: 10.2165/11311010-000000000-00000 PubMedCrossRefGoogle Scholar
  19. 19.
    Gray M, Beeckman D, Bliss DZ, Fader M, Logan S, Junkin J, Selekof J, Doughty D, Kurz P (2012) Incontinence-associated dermatitis: a comprehensive review and update. J Wound Ostomy Cont Nurs 39(1):61–74. doi: 10.1097/WON.0b013e31823fe246 CrossRefGoogle Scholar
  20. 20.
    Gray M, Black JM, Baharestani MM, Bliss DZ, Colwell JC, Goldberg M, Kennedy-Evans KL, Logan S, Ratliff CR (2011) Moisture-associated skin damage: overview and pathophysiology. J Wound Ostomy Cont Nurs 38(3):233–241. doi: 10.1097/WON.0b013e318215f798 CrossRefGoogle Scholar
  21. 21.
    Junkin J, Selekof JL (2007) Prevalence of incontinence and associated skin injury in the acute care inpatient. J Wound Ostomy Cont Nurs 34(3):260–269. doi: 10.1097/01.WON.0000270820.91694.1f CrossRefGoogle Scholar
  22. 22.
    Levin J, Maibach H (2005) The correlation between transepidermal water loss and percutaneous absorption: an overview. J Control Release 103(2):291–299. doi: 10.1016/j.jconrel.2004.11.035 PubMedCrossRefGoogle Scholar
  23. 23.
    Levin J, Maibach H (2008) Human skin buffering capacity: an overview. Skin Res Technol 14(2):121–126. doi: 10.1111/j.1600-0846.2007.00271.x PubMedCrossRefGoogle Scholar
  24. 24.
    Levin J, Maibach HI (2014) Human skin buffering capacity—an updated overview. In: Barel AO, Paye M, Maibach HI (eds) Handbook of cosmetic science and technology, vol 4. CRC Press, Boca Raton, pp 157–162Google Scholar
  25. 25.
    Malten KE, Arend J (1978) Topical toxicity of various concentrations of DMSO recorded with impedance measurements and water vapour loss measurements recording of skin’s adaptation to repeated DMSO irritation. Contact Dermat 4(2):80–92. doi: 10.1111/j.1600-0536.1978.tb03740.x CrossRefGoogle Scholar
  26. 26.
    Mayrovitz HN, Sims N (2001) Biophysical effects of water and synthetic urine on skin. Adv Skin Wound Care 14(6):302–308PubMedCrossRefGoogle Scholar
  27. 27.
    O’Doherty J, McNamara P, Clancy NT, Enfield JG, Leahy MJ (2009) Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration. J Biomed Opt 14(3):034025-034025-034013. doi: 10.1117/1.3149863 Google Scholar
  28. 28.
    Park KH, Kim KS (2014) Effect of a structured skin care regimen on patients with fecal incontinence: a comparison cohort study. J Wound Ostom Cont Nurs 41(2):161–167. doi: 10.1097/won.0000000000000005 CrossRefGoogle Scholar
  29. 29.
    Prakash AV, Davis MD (2010) Contact dermatitis in older adults: a review of the literature. Am J Clin Dermatol 11(6):373–381. doi: 10.2165/11319290-000000000-00000 PubMedCrossRefGoogle Scholar
  30. 30.
    Rather LJ (1971) Disturbance of function (functio laesa): the legendary fifth cardinal sign of inflammation, added by Galen to the four cardinal signs of Celsus. Bull N Y Acad Med 47(3):303–322PubMedCentralPubMedGoogle Scholar
  31. 31.
    Ring EFJ, Ammer K (2012) Infrared thermal imaging in medicine. Physiol Meas 33(3):R33–R46. doi: 10.1088/0967-3334/33/3/r33 PubMedCrossRefGoogle Scholar
  32. 32.
    Rohwer K, Bliss DZ, Savik K (2013) Incontinence-associated dermatitis in community-dwelling individuals with fecal incontinence. J Wound Ostomy Cont Nurs 40(2):181–184. doi: 10.1097/WON.0b013e31827e8b3d CrossRefGoogle Scholar
  33. 33.
    Takiwaki H, Miyaoka Y, Skrebova N, Kohno H, Arase S (2002) Skin reflectance-spectra and colour-value dependency on measuring-head aperture area in ordinary reflectance spectrophotometry and tristimulus colourimetry. Skin Res Technol 8(2):94–97PubMedCrossRefGoogle Scholar
  34. 34.
    Van der Valk PG, Maibach HI (1989) Potential for irritation increases from the wrist to the cubital fossa. Br J Dermatol 121(6):709–712PubMedCrossRefGoogle Scholar
  35. 35.
    Voegeli D (2012) Moisture-associated skin damage: aetiology, prevention and treatment. Br J Nurs 21(9):517–518 520–1PubMedCrossRefGoogle Scholar
  36. 36.
    Wilhelm KP, Freitag G, Wolff HH (1994) Surfactant-induced skin irritation and skin repair: evaluation of a cumulative human irritation model by noninvasive techniques. J Am Acad Dermatol 31(6):981–987PubMedCrossRefGoogle Scholar
  37. 37.
    Zhai H, Willard P, Maibach HI (1998) Evaluating skin-protective materials against contact irritants and allergens. Contact Dermat 38(3):155–158. doi: 10.1111/j.1600-0536.1998.tb05683.x CrossRefGoogle Scholar
  38. 38.
    Zhai H, Willard P, Maibach HI (1999) Putative skin-protective formulations in preventing and/or inhibiting experimentally-produced irritant and allergic contact dermatitis. Contact Dermat 41(4):190–192. doi: 10.1111/j.1600-0536.1999.tb06128.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Larner
    • 1
  • H. Matar
    • 1
  • V. S. Goldman
    • 2
    • 3
  • R. P. Chilcott
    • 1
  1. 1.Research Centre for Topical Drug Delivery and Toxicology, School of PharmacyUniversity of HertfordshireHatfieldUK
  2. 2.Bracco Diagnostics IncHealthcare Protective Products DivisionPrincetonUSA
  3. 3.Healthcare Protective Products GroupEmergent BioSolutionsPrincetonUSA

Personalised recommendations