Archives of Dermatological Research

, Volume 305, Issue 7, pp 557–569

Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing

Review Article


Bone morphogenetic proteins (BMPs) and activins are phylogenetically conserved proteins, belonging to the transforming growth factor-β superfamily, that signal through the phosphorylation of receptor-regulated Smad proteins, activating different cell responses. They are involved in various steps of skin morphogenesis and wound repair, as can be evidenced by the fact that their expression is increased in skin injuries. BMPs play not only a role in bone regeneration but are also involved in cartilage, tendon-like tissue and epithelial regeneration, maintain vascular integrity, capillary sprouting, proliferation/migration of endothelial cells and angiogenesis, promote neuron and dendrite formation, alter neuropeptide levels and are involved in immune response modulation, at least in animal models. On the other hand, activins are involved in wound repair through the regulation of skin and immune cell migration and differentiation, re-epithelialization and granulation tissue formation, and also promote the expression of collagens by fibroblasts and modulate scar formation. This review aims at enunciating the effects of BMPs and activins in the skin, namely in skin development, as well as in crucial phases of skin wound healing, such as inflammation, angiogenesis and repair, and will focus on the effects of these proteins on skin cells and their signaling pathways, exploring the potential therapeutic approach of the application of BMP-2, BMP-6 and activin A in chronic wounds, particularly diabetic foot ulcerations.


Activins Bone morphogenetic proteins Wound healing Inflammation Intracellular signaling pathways Skin 


  1. 1.
    Acosta JB, del Barco DG, Vera DC, Savigne W, Lopez-Saura P, Guillen Nieto G, Schultz GS (2008) The pro-inflammatory environment in recalcitrant diabetic foot wounds. Int Wound J 5(4):530–539PubMedCrossRefGoogle Scholar
  2. 2.
    Ai X, Cappuzzello J, Hall AK (1999) Activin and bone morphogenetic proteins induce calcitonin gene-related peptide in embryonic sensory neurons in vitro. Mol Cell Neurosci 14(6):506–518PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Wahbi AM (2010) Impact of a diabetic foot care education program on lower limb amputation rate. Vasc Health Risk Manag 6:923–934PubMedCrossRefGoogle Scholar
  4. 4.
    Anitha M, Shahnavaz N, Qayed E, Joseph I, Gossrau G, Mwangi S, Sitaraman SV, Greene JG, Srinivasan S (2010) BMP2 promotes differentiation of nitrergic and catecholaminergic enteric neurons through a Smad1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 298(3):G375–G383PubMedCrossRefGoogle Scholar
  5. 5.
    Antsiferova M, Klatte JE, Bodo E, Paus R, Jorcano JL, Matzuk MM, Werner S, Kogel H (2009) Keratinocyte-derived follistatin regulates epidermal homeostasis and wound repair. Lab Invest 89(2):131–141PubMedCrossRefGoogle Scholar
  6. 6.
    Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647PubMedCrossRefGoogle Scholar
  7. 7.
    Au K, Ehrlich HP (2010) When the Smad signaling pathway is impaired, fibroblasts advance open wound contraction. Exp Mol Pathol 89(3):236–240PubMedCrossRefGoogle Scholar
  8. 8.
    Bamberger C, Scharer A, Antsiferova M, Tychsen B, Pankow S, Muller M, Rulicke T, Paus R, Werner S (2005) Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes. Am J Pathol 167(3):733–747PubMedCrossRefGoogle Scholar
  9. 9.
    Bandyopadhyay A, Yadav PS, Prashar P (2013) BMP signaling in development and diseases: A pharmacological perspective. Biochem Pharmacol 85(7):857–864PubMedCrossRefGoogle Scholar
  10. 10.
    Beer HD, Gassmann MG, Munz B, Steiling H, Engelhardt F, Bleuel K, Werner S (2000) Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc 5(1):34–39PubMedCrossRefGoogle Scholar
  11. 11.
    Berlanga-Acosta J (2011) Diabetic lower extremity wounds: the rationale for growth factors-based infiltration treatment. Int Wound J 8(6):612–620PubMedCrossRefGoogle Scholar
  12. 12.
    Bogdanski P, Pupek-Musialik D, Dytfeld J, Jagodzinski PP, Jablecka A, Kujawa A, Musialik K (2007) Influence of insulin therapy on expression of chemokine receptor CCR5 and selected inflammatory markers in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther 45(10):563–567PubMedGoogle Scholar
  13. 13.
    Botchkarev VA (2003) Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. J Invest Dermatol 120(1):36–47PubMedCrossRefGoogle Scholar
  14. 14.
    Botchkarev VA, Sharov AA (2004) BMP signaling in the control of skin development and hair follicle growth. Differ Res Biol Divers 72(9–10):512–526CrossRefGoogle Scholar
  15. 15.
    Boulais N, Misery L (2008) The epidermis: a sensory tissue. Eur J Dermatol 18(2):119–127PubMedGoogle Scholar
  16. 16.
    Bressan M, Davis P, Timmer J, Herzlinger D, Mikawa T (2009) Notochord-derived BMP antagonists inhibit endothelial cell generation and network formation. Dev Biol 326(1):101–111PubMedCrossRefGoogle Scholar
  17. 17.
    Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. Sci World J 11:2391–2402CrossRefGoogle Scholar
  18. 18.
    Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23(6):787–823PubMedCrossRefGoogle Scholar
  19. 19.
    Cruise BA, Xu P, Hall AK (2004) Wounds increase activin in skin and a vasoactive neuropeptide in sensory ganglia. Dev Biol 271(1):1–10PubMedCrossRefGoogle Scholar
  20. 20.
    Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, ten Dijke P, Pietras K (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207(1):85–100PubMedCrossRefGoogle Scholar
  21. 21.
    da Silva L, Carvalho E, Cruz MT (2010) Role of neuropeptides in skin inflammation and its involvement in diabetic wound healing. Expert Opin Biol Ther 10(10):1427–1439. doi:10.1517/14712598.2010.515207 PubMedCrossRefGoogle Scholar
  22. 22.
    Dani C (2013) Activins in adipogenesis and obesity. Int J Obes (Lond) 37(2):163–166CrossRefGoogle Scholar
  23. 23.
    David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961PubMedCrossRefGoogle Scholar
  24. 24.
    David L, Mallet C, Vailhe B, Lamouille S, Feige JJ, Bailly S (2007) Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK. J Cell Physiol 213(2):484–489PubMedCrossRefGoogle Scholar
  25. 25.
    Davis PJ (2009) The double-edged sword of the immune system–a force for good or evil in the wound? Int Wound J 6(4):241–245PubMedCrossRefGoogle Scholar
  26. 26.
    de Kretser DM, O’Hehir RE, Hardy CL, Hedger MP (2012) The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol 359(1–2):101–106PubMedCrossRefGoogle Scholar
  27. 27.
    Derynck R (1994) TGF-beta-receptor-mediated signaling. Trends Biochem Sci 19(12):548–553PubMedCrossRefGoogle Scholar
  28. 28.
    Dickinson S, Hancock DP, Petocz P, Ceriello A, Brand-Miller J (2008) High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am J Clin Nutr 87(5):1188–1193PubMedGoogle Scholar
  29. 29.
    Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127(3):514–525PubMedCrossRefGoogle Scholar
  30. 30.
    Endo D, Kogure K, Hasegawa Y, Maku-uchi M, Kojima I (2004) Activin A augments vascular endothelial growth factor activity in promoting branching tubulogenesis in hepatic sinusoidal endothelial cells. J Hepatol 40(3):399–404PubMedCrossRefGoogle Scholar
  31. 31.
    Fessing MY, Atoyan R, Shander B, Mardaryev AN, Botchkarev VV Jr, Poterlowicz K, Peng Y, Efimova T, Botchkarev VA (2010) BMP signaling induces cell-type-specific changes in gene expression programs of human keratinocytes and fibroblasts. J Invest Dermatol 130(2):398–404PubMedCrossRefGoogle Scholar
  32. 32.
    Freinkel RK, Woodley D (2001) The biology of the skin. Parthenon Pub. Group, New YorkGoogle Scholar
  33. 33.
    Fuchs E (2007) Scratching the surface of skin development. Nature 445(7130):834–842PubMedCrossRefGoogle Scholar
  34. 34.
    Fumagalli M, Musso T, Vermi W, Scutera S, Daniele R, Alotto D, Cambieri I, Ostorero A, Gentili F, Caposio P, Zucca M, Sozzani S, Stella M, Castagnoli C (2007) Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin. Exp Dermatol 16(7):600–610PubMedCrossRefGoogle Scholar
  35. 35.
    Funaba M, Ikeda T, Murakami M, Ogawa K, Abe M (2005) Up-regulation of mouse mast cell protease-6 gene by transforming growth factor-beta and activin in mast cell progenitors. Cell Signal 17(1):121–128PubMedCrossRefGoogle Scholar
  36. 36.
    Funaba M, Ikeda T, Murakami M, Ogawa K, Tsuchida K, Sugino H, Abe M (2003) Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor. J Biol Chem 278(52):52032–52041PubMedCrossRefGoogle Scholar
  37. 37.
    Funaba M, Ikeda T, Ogawa K, Murakami M, Abe M (2003) Role of activin A in murine mast cells: modulation of cell growth, differentiation, and migration. J Leukoc Biol 73(6):793–801PubMedCrossRefGoogle Scholar
  38. 38.
    Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947PubMedCrossRefGoogle Scholar
  39. 39.
    Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, Londahl M, Price PE, Jeffcoate WJ (2012) A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes/Metab Res Rev 28(Suppl 1):119–141CrossRefGoogle Scholar
  40. 40.
    Ge J, Wang Y, Feng Y, Liu H, Cui X, Chen F, Tai G, Liu Z (2009) Direct effects of activin A on the activation of mouse macrophage RAW264.7 cells. Cell Mol Immunol 6(2):129–133PubMedCrossRefGoogle Scholar
  41. 41.
    Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69(4):513–521PubMedGoogle Scholar
  42. 42.
    Gold LI, Sung JJ, Siebert JW, Longaker MT (1997) Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair. Am J Pathol 150(1):209–222PubMedGoogle Scholar
  43. 43.
    Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30(9):1019–1030PubMedCrossRefGoogle Scholar
  44. 44.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321PubMedCrossRefGoogle Scholar
  45. 45.
    Hall AK, Dinsio KJ, Cappuzzello J (2001) Skin cell induction of calcitonin gene-related peptide in embryonic sensory neurons in vitro involves activin. Dev Biol 229(2):263–270PubMedCrossRefGoogle Scholar
  46. 46.
    Hayashi Y, Maeshima K, Goto F, Kojima I (2007) Activin A as a critical mediator of capillary formation: interaction with the fibroblast growth factor action. Endocr J 54(2):311–318PubMedCrossRefGoogle Scholar
  47. 47.
    Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, Laib A, Augustin H, Bode C, Patterson C, Moser M (2008) BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res 103(8):804–812PubMedCrossRefGoogle Scholar
  48. 48.
    Hirt-Burri N, Scaletta C, Gerber S, Pioletti DP, Applegate LA (2008) Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes. Artif Organs 32(7):509–518PubMedCrossRefGoogle Scholar
  49. 49.
    Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6(4):432–438PubMedCrossRefGoogle Scholar
  50. 50.
    Honda Y, Anada T, Kamakura S, Nakamura M, Sugawara S, Suzuki O (2006) Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun 345(3):1155–1160PubMedCrossRefGoogle Scholar
  51. 51.
    Hong JH, Lee GT, Lee JH, Kwon SJ, Park SH, Kim SJ, Kim IY (2009) Effect of bone morphogenetic protein-6 on macrophages. Immunology 128(1 Suppl):e442–e450PubMedCrossRefGoogle Scholar
  52. 52.
    Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK (2002) Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem 80(1):54–63PubMedCrossRefGoogle Scholar
  53. 53.
    Hubner G, Hu Q, Smola H, Werner S (1996) Strong induction of activin expression after injury suggests an important role of activin in wound repair. Dev Biol 173(2):490–498PubMedCrossRefGoogle Scholar
  54. 54.
    Hwang EA, Lee HB, Tark KC (2001) Comparison of bone morphogenetic protein receptors expression in the fetal and adult skin. Yonsei Med J 42(6):581–586PubMedGoogle Scholar
  55. 55.
    Ito Y, Sarkar P, Mi Q, Wu N, Bringas P Jr, Liu Y, Reddy S, Maxson R, Deng C, Chai Y (2001) Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Dev Biol 236(1):181–194PubMedCrossRefGoogle Scholar
  56. 56.
    Jeffcoate WJ, Harding KG (2003) Diabetic foot ulcers. Lancet 361(9368):1545–1551. doi:10.1016/S0140-6736(03)13169-8 PubMedCrossRefGoogle Scholar
  57. 57.
    Kaiser S, Schirmacher P, Philipp A, Protschka M, Moll I, Nicol K, Blessing M (1998) Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice. J Invest Dermatol 111(6):1145–1152PubMedCrossRefGoogle Scholar
  58. 58.
    Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146PubMedCrossRefGoogle Scholar
  59. 59.
    Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, Gastens MH, Quast T, Negrean M, Stirban OA, Nandrean SG, Gotting C, Minartz P, Kleesiek K, Tschoepe D (2012) Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 66(4):384–393PubMedCrossRefGoogle Scholar
  60. 60.
    Klopcic B, Maass T, Meyer E, Lehr HA, Metzger D, Chambon P, Mann A, Blessing M (2007) TGF-beta superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 86(11–12):781–799PubMedCrossRefGoogle Scholar
  61. 61.
    Knighton DR, Fiegel VD (1989) Macrophage-derived growth factors in wound healing: regulation of growth factor production by the oxygen microenvironment. Am Rev Respir Dis 140(4):1108–1111PubMedCrossRefGoogle Scholar
  62. 62.
    Kozian DH, Ziche M, Augustin HG (1997) The activin-binding protein follistatin regulates autocrine endothelial cell activity and induces angiogenesis. Lab Invest 76(2):267–276PubMedGoogle Scholar
  63. 63.
    Kwon SJ, Lee GT, Lee JH, Kim WJ, Kim IY (2009) Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages. Immunology 128(1 Suppl):e758–e765PubMedCrossRefGoogle Scholar
  64. 64.
    Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501PubMedCrossRefGoogle Scholar
  65. 65.
    Li G, Cui Y, McIlmurray L, Allen WE, Wang H (2005) rhBMP-2, rhVEGF(165), rhPTN and thrombin-related peptide, TP508 induce chemotaxis of human osteoblasts and microvascular endothelial cells. J Orthop Res 23(3):680–685PubMedCrossRefGoogle Scholar
  66. 66.
    Lin SY, Morrison JR, Phillips DJ, de Kretser DM (2003) Regulation of ovarian function by the TGF-beta superfamily and follistatin. Reproduction 126(2):133–148PubMedCrossRefGoogle Scholar
  67. 67.
    Liu D, Wang J, Kinzel B, Mueller M, Mao X, Valdez R, Liu Y, Li E (2007) Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110(5):1502–1510PubMedCrossRefGoogle Scholar
  68. 68.
    Liu ZJ, Velazquez OC (2008) Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal 10(11):1869–1882PubMedCrossRefGoogle Scholar
  69. 69.
    Maeshima K, Maeshima A, Hayashi Y, Kishi S, Kojima I (2004) Crucial role of activin a in tubulogenesis of endothelial cells induced by vascular endothelial growth factor. Endocrinology 145(8):3739–3745PubMedCrossRefGoogle Scholar
  70. 70.
    Maric I, Poljak L, Zoricic S, Bobinac D, Bosukonda D, Sampath KT, Vukicevic S (2003) Bone morphogenetic protein-7 reduces the severity of colon tissue damage and accelerates the healing of inflammatory bowel disease in rats. J Cell Physiol 196(2):258–264PubMedCrossRefGoogle Scholar
  71. 71.
    Martinez VG, Hernandez-Lopez C, Valencia J, Hidalgo L, Entrena A, Zapata AG, Vicente A, Sacedon R, Varas A (2010) The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation. Immunol Cell Biol 89(5):610–618PubMedCrossRefGoogle Scholar
  72. 72.
    Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170(4):1178–1191PubMedCrossRefGoogle Scholar
  73. 73.
    Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1(3):169–178PubMedCrossRefGoogle Scholar
  74. 74.
    McCarthy SA, Bicknell R (1993) Inhibition of vascular endothelial cell growth by activin-A. J Biol Chem 268(31):23066–23071PubMedGoogle Scholar
  75. 75.
    Mi Q, Riviere B, Clermont G, Steed DL, Vodovotz Y (2007) Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-beta1. Wound Repair Regen 15(5):671–682PubMedCrossRefGoogle Scholar
  76. 76.
    Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037PubMedCrossRefGoogle Scholar
  77. 77.
    Moser M, Binder O, Wu Y, Aitsebaomo J, Ren R, Bode C, Bautch VL, Conlon FL, Patterson C (2003) BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol 23(16):5664–5679PubMedCrossRefGoogle Scholar
  78. 78.
    Munz B, Smola H, Engelhardt F, Bleuel K, Brauchle M, Lein I, Evans LW, Huylebroeck D, Balling R, Werner S (1999) Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J 18(19):5205–5215PubMedCrossRefGoogle Scholar
  79. 79.
    Munz B, Tretter YP, Hertel M, Engelhardt F, Alzheimer C, Werner S (2001) The roles of activins in repair processes of the skin and the brain. Mol Cell Endocrinol 180(1–2):169–177PubMedCrossRefGoogle Scholar
  80. 80.
    Musso T, Scutera S, Vermi W, Daniele R, Fornaro M, Castagnoli C, Alotto D, Ravanini M, Cambieri I, Salogni L, Elia AR, Giovarelli M, Facchetti F, Girolomoni G, Sozzani S (2008) Activin A induces Langerhans cell differentiation in vitro and in human skin explants. PLoS ONE 3(9):e3271PubMedCrossRefGoogle Scholar
  81. 81.
    Mustoe T (2004) Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg 187(5A):65S–70SPubMedCrossRefGoogle Scholar
  82. 82.
    Nagamine K, Furue M, Fukui A, Matsuda A, Hori T, Asashima M (2007) Blood cell and vessel formation following transplantation of activin-treated explants in Xenopus. Biol Pharm Bull 30(10):1856–1859PubMedCrossRefGoogle Scholar
  83. 83.
    Nathan C (2002) Points of control in inflammation. Nature 420(6917):846–852. doi:10.1038/nature01320 PubMedCrossRefGoogle Scholar
  84. 84.
    Owens P, Han G, Li AG, Wang XJ (2008) The role of Smads in skin development. J Invest Dermatol 128(4):783–790PubMedCrossRefGoogle Scholar
  85. 85.
    Pangas SA, Woodruff TK (2000) Activin signal transduction pathways. TEM 11(8):309–314PubMedGoogle Scholar
  86. 86.
    Panopoulou E, Murphy C, Rasmussen H, Bagli E, Rofstad EK, Fotsis T (2005) Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms. Cancer Res 65(5):1877–1886PubMedCrossRefGoogle Scholar
  87. 87.
    Pavelock KA, Girard BM, Schutz KC, Braas KM, May V (2007) Bone morphogenetic protein down-regulation of neuronal pituitary adenylate cyclase-activating polypeptide and reciprocal effects on vasoactive intestinal peptide expression. J Neurochem 100(3):603–616PubMedCrossRefGoogle Scholar
  88. 88.
    Poulaki V, Mitsiades N, Kruse FE, Radetzky S, Iliaki E, Kirchhof B, Joussen AM (2004) Activin a in the regulation of corneal neovascularization and vascular endothelial growth factor expression. Am J Pathol 164(4):1293–1302PubMedCrossRefGoogle Scholar
  89. 89.
    Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 131(11):741–750PubMedCrossRefGoogle Scholar
  90. 90.
    Ren R, Charles PC, Zhang C, Wu Y, Wang H, Patterson C (2007) Gene expression profiles identify a role for cyclooxygenase 2-dependent prostanoid generation in BMP6-induced angiogenic responses. Blood 109(7):2847–2853PubMedGoogle Scholar
  91. 91.
    Roberts AB, Russo A, Felici A, Flanders KC (2003) Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann NY Acad Sci 995:1–10PubMedCrossRefGoogle Scholar
  92. 92.
    Robson NC, Phillips DJ, McAlpine T, Shin A, Svobodova S, Toy T, Pillay V, Kirkpatrick N, Zanker D, Wilson K, Helling I, Wei H, Chen W, Cebon J, Maraskovsky E (2008) Activin-A: a novel dendritic cell-derived cytokine that potently attenuates CD40 ligand-specific cytokine and chemokine production. Blood 111(5):2733–2743PubMedCrossRefGoogle Scholar
  93. 93.
    Rogers LC, Frykberg RG, Armstrong DG, Boulton AJ, Edmonds M, Van GH, Hartemann A, Game F, Jeffcoate W, Jirkovska A, Jude E, Morbach S, Morrison WB, Pinzur M, Pitocco D, Sanders L, Wukich DK, Uccioli L (2011) The Charcot foot in diabetes. J Am Podiatr Med Assoc 101(5):437–446PubMedGoogle Scholar
  94. 94.
    Rothhammer T, Bataille F, Spruss T, Eissner G, Bosserhoff AK (2007) Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 26(28):4158–4170PubMedCrossRefGoogle Scholar
  95. 95.
    Rotzer D, Krampert M, Sulyok S, Braun S, Stark HJ, Boukamp P, Werner S (2006) Id proteins: novel targets of activin action, which regulate epidermal homeostasis. Oncogene 25(14):2070–2081PubMedCrossRefGoogle Scholar
  96. 96.
    Salogni L, Musso T, Bosisio D, Mirolo M, Jala VR, Haribabu B, Locati M, Sozzani S (2009) Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14. Blood 113(23):5848–5856PubMedCrossRefGoogle Scholar
  97. 97.
    Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972PubMedCrossRefGoogle Scholar
  98. 98.
    Scutera S, Riboldi E, Daniele R, Elia AR, Fraone T, Castagnoli C, Giovarelli M, Musso T, Sozzani S (2008) Production and function of activin A in human dendritic cells. Eur Cytokine Netw 19(1):60–68PubMedGoogle Scholar
  99. 99.
    Shao ES, Lin L, Yao Y, Bostrom KI (2009) Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 114(10):2197–2206PubMedCrossRefGoogle Scholar
  100. 100.
    Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700PubMedCrossRefGoogle Scholar
  101. 101.
    Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14(2):153–166PubMedCrossRefGoogle Scholar
  102. 102.
    Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746PubMedCrossRefGoogle Scholar
  103. 103.
    Soares R, Balogh G, Guo S, Gartner F, Russo J, Schmitt F (2004) Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol 18(9):2333–2343PubMedCrossRefGoogle Scholar
  104. 104.
    Soares R, Guo S, Gartner F, Schmitt FC, Russo J (2003) 17 beta -estradiol-mediated vessel assembly and stabilization in tumor angiogenesis requires TGF beta and EGFR crosstalk. Angiogenesis 6(4):271–281PubMedCrossRefGoogle Scholar
  105. 105.
    Stegenga ME, van der Crabben SN, Dessing MC, Pater JM, van den Pangaart PS, de Vos AF, Tanck MW, Roos D, Sauerwein HP, van der Poll T (2008) Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med 25(2):157–164PubMedCrossRefGoogle Scholar
  106. 106.
    Stelnicki EJ, Longaker MT, Holmes D, Vanderwall K, Harrison MR, Largman C, Hoffman WY (1998) Bone morphogenetic protein-2 induces scar formation and skin maturation in the second trimester fetus. Plast Reconstr Surg 101(1):12–19PubMedCrossRefGoogle Scholar
  107. 107.
    Stoitzner P, Stossel H, Wankell M, Hofer S, Heufler C, Werner S, Romani N (2005) Langerhans cells are strongly reduced in the skin of transgenic mice overexpressing follistatin in the epidermis. Eur J Cell Biol 84(8):733–741PubMedCrossRefGoogle Scholar
  108. 108.
    Sulyok S, Wankell M, Alzheimer C, Werner S (2004) Activin: an important regulator of wound repair, fibrosis, and neuroprotection. Mol Cell Endocrinol 225(1–2):127–132PubMedCrossRefGoogle Scholar
  109. 109.
    Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123(Pt 10):1684–1692PubMedCrossRefGoogle Scholar
  110. 110.
    Symes AJ, Pitts RL, Conover J, Kos K, Coulombe J (2000) Synergy of activin and ciliary neurotrophic factor signaling pathways in the induction of vasoactive intestinal peptide gene expression. Mol Endocrinol 14(3):429–439PubMedCrossRefGoogle Scholar
  111. 111.
    ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29(5):265–273PubMedCrossRefGoogle Scholar
  112. 112.
    Thompson TB, Cook RW, Chapman SC, Jardetzky TS, Woodruff TK (2004) Beta A versus beta B: is it merely a matter of expression? Mol Cell Endocrinol 225(1–2):9–17PubMedCrossRefGoogle Scholar
  113. 113.
    Thompson TB, Lerch TF, Cook RW, Woodruff TK, Jardetzky TS (2005) The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev Cell 9(4):535–543PubMedCrossRefGoogle Scholar
  114. 114.
    Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95(6):779–791PubMedCrossRefGoogle Scholar
  115. 115.
    Turns M (2011) The diabetic foot: an overview of assessment and complications. Br J Nurs 20(15):S19–S25PubMedGoogle Scholar
  116. 116.
    Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50(6):1392–1406PubMedCrossRefGoogle Scholar
  117. 117.
    Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331PubMedCrossRefGoogle Scholar
  118. 118.
    Wagner K, Peters M, Scholz A, Benckert C, Ruderisch HS, Wiedenmann B, Rosewicz S (2004) Activin A stimulates vascular endothelial growth factor gene transcription in human hepatocellular carcinoma cells. Gastroenterology 126(7):1828–1843PubMedCrossRefGoogle Scholar
  119. 119.
    Wang D, Prakash J, Nguyen P, Davis-Dusenbery BN, Hill NS, Layne MD, Hata A, Lagna G (2012) Bone morphogenetic protein signaling in vascular disease: anti-inflammatory action through myocardin-related transcription factor A. J Biol Chem 287(33):28067–28077PubMedCrossRefGoogle Scholar
  120. 120.
    Wang SY, Tai GX, Zhang PY, Mu DP, Zhang XJ, Liu ZH (2008) Inhibitory effect of activin A on activation of lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Cytokine 42(1):85–91PubMedCrossRefGoogle Scholar
  121. 121.
    Wankell M, Munz B, Hubner G, Hans W, Wolf E, Goppelt A, Werner S (2001) Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. EMBO J 20(19):5361–5372PubMedCrossRefGoogle Scholar
  122. 122.
    Werner S, Alzheimer C (2006) Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev 17(3):157–171PubMedCrossRefGoogle Scholar
  123. 123.
    Werner S, Beer HD, Mauch C, Luscher B (2001) The Mad1 transcription factor is a novel target of activin and TGF-beta action in keratinocytes: possible role of Mad1 in wound repair and psoriasis. Oncogene 20(51):7494–7504PubMedCrossRefGoogle Scholar
  124. 124.
    Xu P, Hall AK (2006) The role of activin in neuropeptide induction and pain sensation. Dev Biol 299(2):303–309PubMedCrossRefGoogle Scholar
  125. 125.
    Xu P, Hall AK (2007) Activin acts with nerve growth factor to regulate calcitonin gene-related peptide mRNA in sensory neurons. Neuroscience 150(3):665–674PubMedCrossRefGoogle Scholar
  126. 126.
    Xu P, Van Slambrouck C, Berti-Mattera L, Hall AK (2005) Activin induces tactile allodynia and increases calcitonin gene-related peptide after peripheral inflammation. J Neurosci 25(40):9227–9235PubMedCrossRefGoogle Scholar
  127. 127.
    Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N, Han YP (2010) Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am J Pathol 176(5):2247–2258PubMedCrossRefGoogle Scholar
  128. 128.
    Yang L, Yamasaki K, Shirakata Y, Dai X, Tokumaru S, Yahata Y, Tohyama M, Hanakawa Y, Sayama K, Hashimoto K (2006) Bone morphogenetic protein-2 modulates Wnt and frizzled expression and enhances the canonical pathway of Wnt signaling in normal keratinocytes. J Dermatol Sci 42(2):111–119PubMedCrossRefGoogle Scholar
  129. 129.
    Zhang C, Wang KZ, Qiang H, Tang YL, Li Q, Li M, Dang XQ (2010) Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin 31(7):821–830PubMedCrossRefGoogle Scholar
  130. 130.
    Zhang F, Qiu T, Wu X, Wan C, Shi W, Wang Y, Chen JG, Wan M, Clemens TL, Cao X (2009) Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 24(7):1224–1233PubMedCrossRefGoogle Scholar
  131. 131.
    Zhang M, Liu NY, Wang XE, Chen YH, Li QL, Lu KR, Sun L, Jia Q, Zhang L, Zhang L (2011) Activin B promotes epithelial wound healing in vivo through RhoA-JNK signaling pathway. PLoS ONE 6(9):e25143PubMedCrossRefGoogle Scholar
  132. 132.
    Zhou Q, Heinke J, Vargas A, Winnik S, Krauss T, Bode C, Patterson C, Moser M (2007) ERK signaling is a central regulator for BMP-4 dependent capillary sprouting. Cardiovasc Res 76(3):390–399PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Moura
    • 1
  • L. da Silva
    • 1
    • 2
  • M. T. Cruz
    • 1
    • 3
  • E. Carvalho
    • 1
    • 4
  1. 1.Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
  3. 3.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  4. 4.The Portuguese Diabetes Association (APDP)LisbonPortugal

Personalised recommendations