Archives of Dermatological Research

, Volume 305, Issue 6, pp 535–544 | Cite as

Effects of a sunscreen formulation on albino hairless mice: a morphological approach

  • Bryan Hudson Hossy
  • Alvaro Augusto da Costa Leitão
  • Flávio Barbosa Luz
  • Elisabete Pereira dos Santos
  • Silvana Allodi
  • Marcelo de Pádula
  • Nádia Campos de Oliveira Miguel
Original Paper


The purpose of the study was to evaluate the effects of a sunscreen formulation on the skin of albino hairless mice subjected to simulated solar light (SSL) in terms of morphological changes. Young adult albino hairless mice HRS/J (n = 36) were used as an experimental model for determining skin photoaging changes. Mice were irradiated with SSL, and the sunscreen (estimated SPF 30, PF-UVA) was obtained from the Pharmacy College/UFRJ, Brazil. The animals were divided into four groups: non-treated (G1), radiation only (G2), sunscreen-treated (G3) and vehicle + radiation (G4). Animals from groups G2, G3 and G4 were irradiated weekly (5 weeks), with no immobilization. One week after the final exposure, the dorsal skin was observed using a dermatoscopic camera. Biopsies were analyzed in order to quantify neovascularization and to evaluate histological aspects of the skin. Neovascularization was also evaluated with immunohistochemical reactions for the Von Willebrand factor. Animals from G2 displayed classical morphological changes denoting skin photoaging: thickening of the epidermis, increased dermal cellularity, follicular keratosis, sebaceous gland hyperplasia, and angiogenesis. Animals from groups G3 and G1 displayed similar morphological profiles, without these changes. Animals from group G4 showed more morphological changes than group G2, emphasizing the relative importance of the putative photosensitizing components present in the vehicle formulation. The extent of the morphological skin changes suggested that the sunscreen formulation was effective against SSL, and showed the importance of assessing the phototoxicity of vehicle formulations.


Skin photoaging Sun exposure Sunlight simulator Ultraviolet radiation 



This study was funded by CNPq and FAPERJ. B.H.H. received a scholarship from CAPES.


  1. 1.
    ANVISA (2012) Resolução de Colegiado (RDC) nº 30/12 Diário Oficial da União (DOU), Nº 107, segunda-feira, 4 de junho de 2012, seção 1Google Scholar
  2. 2.
    Benavides F, Oberyszyn MT, Vanbuskirk MA et al (2009) The hairless mouse in skin research. J Dermatol Sci 53:10–18PubMedCrossRefGoogle Scholar
  3. 3.
    Berg RJW, Gruijl FR, Van Der Leun JC (1993) Interaction between ultraviolet A and ultraviolet B radiations in induction in hairless mice skin cancer. Cancer Res 53:4212–4217PubMedGoogle Scholar
  4. 4.
    Chung JH, Eun HC (2007) Angiogenesis in skin aging and photoaging. J Dermatol 34:593–600PubMedCrossRefGoogle Scholar
  5. 5.
    Diffey BL (2001) When should sunscreen be reapplied? J Am Acad Dermatol 45:882–885PubMedCrossRefGoogle Scholar
  6. 6.
    Diffey B (2009) Sunscreen: expectation and realization. Photodermatol Photoimmunol Photomed 25:233–236PubMedCrossRefGoogle Scholar
  7. 7.
    Farage MA, Miller K, Elsner P et al (2008) Intrinsic and extrinsic factors in skin aging: a review. Int J Cosmet Sci 30:87–95PubMedCrossRefGoogle Scholar
  8. 8.
    Gaspar LR, Maia Campos PMGB (2006) Evaluation of the photostability of different UV filter combinations in a sunscreen. Int J Pharm 307:123–128PubMedCrossRefGoogle Scholar
  9. 9.
    Giacomoni PU, D’Alessio P (1996) Open questions in photobiology IV. Photoaging of the skin. J Photochem Photobiol B 33:267–272PubMedCrossRefGoogle Scholar
  10. 10.
    Giacomoni PU, Rein GA (2004) Mechanistic model for the aging of human skin. Micron 35:179–184PubMedCrossRefGoogle Scholar
  11. 11.
    Gilcherest BA, Soter NA, Stoff JS et al (1981) The human sunburn reaction: histologic and biochemical studies. J Am Acad Dermatol 5:411–422CrossRefGoogle Scholar
  12. 12.
    Handa O, Kokura S, Adachi S et al (2006) Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology 227:62–72PubMedCrossRefGoogle Scholar
  13. 13.
    IBGE (2008) Projeção da População do Brasil IBGE: população brasileira envelhece em ritmo acelerado available via. Accessed 05 June 2012
  14. 14.
    CTPE-Instituto Nacional de Pesquisas Espaciais—Centro de Previsão de Tempo e Estudos Climáticos-Brazil (2012) available via: Accessed 09 April 2012
  15. 15.
    Kawada S, Masaru Ohtani, Ishii N (2010) Increased oxygen tension attenuates acute ultraviolet-B-induced skin angiogenesis and wrinkle formation. Am J Physiol Regul Integr Comp Physiol 299:694–701CrossRefGoogle Scholar
  16. 16.
    Kligman HL (1996) The hairless mouse model for photoaging. Clin Dermatol 14:183–195PubMedCrossRefGoogle Scholar
  17. 17.
    Lecher CM, Philipsen PA, Poulsen T et al (2009) Topical pimecrolimus and tacrolimus do not accelerate photocarcinogenesis in hairless mice after UVA or simulated solar radiation. Exp Dermatol 18:246–251CrossRefGoogle Scholar
  18. 18.
    Lecher CM, Philipsen PA, Poulsen T et al (2010) Topical hydrocortisone, clobetasol propionate, and calcipotriol do not increase photocarcinogenesis induced by simulated solar irradiation in hairless mice. Exp Dermatol 19:973–979CrossRefGoogle Scholar
  19. 19.
    Mansur JS, Breder MNR, Mansur MCA, Azulay RD (1986) Determinação do fator de proteção solar por espectrofotometria. An Bras Dermatol 61:121–124Google Scholar
  20. 20.
    Miller SA, Hamilton SL, Wester UG, Cyr WH (1998) An analysis of UVA emissions from sunlamps and the potential importance for melanoma. Photochem Photobiol 68:63–70PubMedCrossRefGoogle Scholar
  21. 21.
    Mitra D, Luo X, Morgan A et al (2012) A UV-independent pathway to melanoma carcinogenesis in the redhair-fairskin background. Nature 491:449–453PubMedCrossRefGoogle Scholar
  22. 22.
    Moon SE, Youn JL, Kim JA (2000) The effect of ultraviolet B exposure scheduling on the photodamage of hairless mouse skin. Photodermatol Photoimmunol Photomed 16:74–77PubMedCrossRefGoogle Scholar
  23. 23.
    Mowad CM (2000) Allergic contact dermatitis caused by parabens: 2 case reports and a review. Am J Contact Dermat 11:53–56PubMedCrossRefGoogle Scholar
  24. 24.
    Nascimento DF, Silva AC, Mansur CRE et al (2012) Characterization and evaluation of poly(ε-caprolactone) nanoparticles containing 2-ethylhexyl-p-methoxycinnamate, octocrylene, and benzophenone-3 in anti-solar preparations. J Nanosci Nanotechnol 12:7155–7166PubMedCrossRefGoogle Scholar
  25. 25.
    Ostewalder U, Herzog B (2009) Sun protection factors: world wide confusion. Br J Dermatol 161:13–24CrossRefGoogle Scholar
  26. 26.
    Palm MD, O’Donoghue M (2007) Update on photoprotection. Dermatol Ther 20:360–376PubMedCrossRefGoogle Scholar
  27. 27.
    Pitts DG (1990) Sunlight as an ultraviolet source. Optometry Vision Sci 67:401–406CrossRefGoogle Scholar
  28. 28.
    Rabe JH, Mamelak AJ, McElgunn PJ et al (2006) Photoaging: mechanisms and repair. J Am Acad Dermatol 55:1–19PubMedCrossRefGoogle Scholar
  29. 29.
    Reich A, Harupa M, Bury M et al (2009) Application of sunscreen preparations: a need to change the regulations. Photodermatol Photoimmunol Photomed 25:242–244PubMedCrossRefGoogle Scholar
  30. 30.
    Saud ES, De Moraes HV, Allodi S et al (2012) Clinical and histopathological outcome of subconjunctival triamcinolone injection for the treatment of acute ocular alkali burn in rabbits. Cornea 31:181–187PubMedCrossRefGoogle Scholar
  31. 31.
    Scherschun L, Lim HW (2001) Photoprotection by sunscreens. Am J Clin Dermatol 2:131–134PubMedCrossRefGoogle Scholar
  32. 32.
    Svobodová A, Vostálová J (2010) Solar radiation induced skin damage: review of protective and preventive options. Int J Radiat Biol 86:999–1030PubMedCrossRefGoogle Scholar
  33. 33.
    Svobodová A, Walterova D, Vostálová J (2006) Ultraviolet light induced alterations to the skin. Biomed Pap Med Fac Univ Palacky Olomonuc Czech Repub 150:25–38CrossRefGoogle Scholar
  34. 34.
    Urbach F (2001) The historical aspects of sunscreen. J Photochem Photobiol B 64:99–104PubMedCrossRefGoogle Scholar
  35. 35.
    Vollmar B, Morgenthaler M, Amon M et al (2000) Skin microvascular adaptations during maturation and aging of hairless mice. Am J Physiol Heart Circ Physiol 279:H1591–H1599PubMedGoogle Scholar
  36. 36.
    Yaar M, Gilcherest AB (2007) Photoaging: mechanism, prevention and therapy. Br J Dermatol 157:874–887PubMedCrossRefGoogle Scholar
  37. 37.
    Yano K, Kodoya K, Kajiya K et al (2005) Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1. Br J Dermatol 152:115–121PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bryan Hudson Hossy
    • 1
  • Alvaro Augusto da Costa Leitão
    • 2
  • Flávio Barbosa Luz
    • 3
  • Elisabete Pereira dos Santos
    • 4
  • Silvana Allodi
    • 5
  • Marcelo de Pádula
    • 1
    • 6
  • Nádia Campos de Oliveira Miguel
    • 7
  1. 1.Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Departamento de Clínica Médica/Dermatologia, Faculdade de MedicinaUniversidade Federal FluminenseRio de JaneiroBrazil
  4. 4.Departamento de Medicamentos, Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  6. 6.Laboratório de Diagnóstico Laboratorial e Hematologia, Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  7. 7.Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências BiomédicasUFRJRio de JaneiroBrazil

Personalised recommendations