Archives of Dermatological Research

, Volume 305, Issue 5, pp 433–445 | Cite as

The role of ERK and JNK signaling in connective tissue growth factor induced extracellular matrix protein production and scar formation

  • Xiaolong Hu
  • Hongtao Wang
  • Jiaqi Liu
  • Xiaobing Fang
  • Ke Tao
  • Yaojun Wang
  • Na Li
  • Jihong Shi
  • Yunchuan Wang
  • Peng Ji
  • Weixia Cai
  • Xiaozhi Bai
  • Xiongxiang Zhu
  • Juntao Han
  • Dahai Hu
Original Paper

Abstract

CCN2 plays an important role in the pathogenesis of hypertrophic scars (HTSs). Although CCN2 is involved in many fibroproliferative events, the CCN2 induction signaling pathway in HTSs is yet to be elucidated. Here, we first investigated the effect of the mitogen-activated protein kinases (MAPKs) on CCN2-induced α-smooth muscle actin (α-SMA) and collagen I expression in human HTS fibroblasts (HTSFs). Then, we established HTSs in a rabbit ear model and determined the effect of MAPKs on the pathogenesis of HTSs. MAPK pathways were activated by CCN2 in HTSFs. Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors significantly inhibited CCN2-induced expression of α-SMA and collagen I in HTSFs. In the rabbit ear model of the HTS, JNK and ERK inhibitors significantly improved the architecture of the rabbit ear scar and reduced scar formation on the rabbit ear. Our results indicate that ERK and JNK mediate collagen I expression and scarring of the rabbit ear, and may be considered for specific drug therapy targets for HTSs.

Keywords

Hypertrophic scar Extracellular signal-regulated kinase c-Jun N-terminal kinase Connective tissue growth factor Scar formation 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 81171811, 81201470) and the Science Foundation of Shaanxi Province (2011K12-03-02).

References

  1. 1.
    Bayat A, McGrouther DA, Ferguson MW (2003) Skin scarring. BMJ 326:88–92CrossRefPubMedGoogle Scholar
  2. 2.
    Bonniaud P, Margetts PJ, Kolb M, Haberberger T, Kelly M, Robertson J, Gauldie J (2003) Adenoviral gene transfer of connective tissue growth factor in the lung induces transient fibrosis. Am J Respir Crit Care Med 168(7):770–778CrossRefPubMedGoogle Scholar
  3. 3.
    Brown BC, McKenna SP, Siddhi K, McGrouther DA, Bayat A (2008) The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconst Aesthet Surg 61:1049–1058CrossRefGoogle Scholar
  4. 4.
    Browne JG, Ho SL, Kane R, Oliver N, Clark AF, O’Brien CJ, Crean JK (2011) Connective tissue growth factor is increased in pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 52:3660–3666CrossRefPubMedGoogle Scholar
  5. 5.
    Chung CW, Zhang QL, Qiao LY (2010) Endogenous nerve growth factor regulates collagen expression and bladder hypertrophy through Akt and MAPK pathways during cystitis. J Biol Chem 285:4206–4212CrossRefPubMedGoogle Scholar
  6. 6.
    Diao JS, Xia WS, Yi CG, Wang YM, Li B, Xia W, Liu B, Guo SZ, Sun XD (2011) Trichostatin A inhibits collagen synthesis and induces apoptosis in keloid fibroblasts. Arch Dermatol Res 303:573–580CrossRefPubMedGoogle Scholar
  7. 7.
    Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X, Grotendorst GR (1999) Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J 13:1774–1786PubMedGoogle Scholar
  8. 8.
    Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17:113–125CrossRefPubMedGoogle Scholar
  9. 9.
    Ge C, Xiao G, Jiang D, Franceschi RT (2007) Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176:709–718CrossRefPubMedGoogle Scholar
  10. 10.
    Hayata N, Fujio Y, Yamamoto Y, Iwakura T, Obana M, Takai M, Mohri T, Nonen S, Maeda M, Azuma J (2008) Connective tissue growth factor induces cardiac hypertrophy through Akt signaling. Biochem Biophys Res Commun 370:274–278CrossRefPubMedGoogle Scholar
  11. 11.
    Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791CrossRefPubMedGoogle Scholar
  12. 12.
    Kryger ZB, Sisco M, Roy NK, Lu L, Rosenberg D, Mustoe TA (2007) Temporal expression of the transforming growth factor-Beta pathway in the rabbit ear model of wound healing and scarring. J Am Coll Surg 205:78–88CrossRefPubMedGoogle Scholar
  13. 13.
    Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810CrossRefPubMedGoogle Scholar
  14. 14.
    Liu J, Wang Y, Pan Q, Su Y, Zhang Z, Han J, Zhu X, Tang C, Hu D (2012) Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to- myofibroblast transition. J Dermatol Sci 65:38–49CrossRefPubMedGoogle Scholar
  15. 15.
    Liu S, Leask A (2011) CCN2 is not required for skin development. J Cell Commun Signal 5:179–182CrossRefPubMedGoogle Scholar
  16. 16.
    Liu S, Shi-wen X, Abraham DJ, Leask A (2011) CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum 63:239–246CrossRefPubMedGoogle Scholar
  17. 17.
    Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K (1999) Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol 181:153–159CrossRefPubMedGoogle Scholar
  18. 18.
    Moussad EE, Brigstock DR (2000) Connective tissue growth factor: what’s in a name? Mol Genet Metab 71:276–292CrossRefPubMedGoogle Scholar
  19. 19.
    Nagai N, Klimava A, Lee WH, Izumi-Nagai K, Handa JT (2009) CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44mapk) MAPK and the p38 MAPK signaling pathways. Invest Ophthalmol Vis Sci 50:1903–1910CrossRefPubMedGoogle Scholar
  20. 20.
    Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64CrossRefPubMedGoogle Scholar
  21. 21.
    Ponticos M, Holmes AM, Shi-wen X, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE (2009) Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum 60:2142–2155CrossRefPubMedGoogle Scholar
  22. 22.
    Saito M, Yamazaki M, Maeda T, Matsumura H, Setoguchi Y, Tsuboi R (2012) Pirfenidone suppresses keloid fibroblast-embedded collagen gel contraction. Arch Dermatol Res 304:217–222CrossRefPubMedGoogle Scholar
  23. 23.
    Shi JH, Hu DH, Zhang ZF, Bai XZ, Wang HT, Zhu XX, Su YJ, Tang CW (2012) Reduced expression of microtubule-associated protein 1 light chain 3 in hypertrophic scars. Arch Dermatol Res 304:209–215CrossRefPubMedGoogle Scholar
  24. 24.
    Shi-wen X, Stanton LA, Kennedy L, Pala D, Chen Y, Howat SL, Renzoni EA, Carter DE, Bou-Gharios G, Stratton RJ, Pearson JD, Beier F, Lyons KM, Black CM, Abraham DJ, Leask A (2006) CCN2 is necessary for adhesive responses to transforming growth factor-beta1 in embryonic fibroblasts. J Biol Chem 281:10715–10726CrossRefPubMedGoogle Scholar
  25. 25.
    Sisco M, Kryger ZB, O’Shaughnessy KD, Kim PS, Schultz GS, Ding XZ, Roy NK, Dean NM, Mustoe TA (2008) Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen 16:661–673CrossRefPubMedGoogle Scholar
  26. 26.
    Tan TW, Lai CH, Huang CY, Yang WH, Chen HT, Hsu HC, Fong YC, Tang CH (2009) CTGF enhances migration and MMP-13 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Biochem 107:345–356CrossRefPubMedGoogle Scholar
  27. 27.
    Tang B, Zhu B, Liang Y, Bi L, Hu Z, Chen B, Zhang K, Zhu J (2011) Asiaticoside suppresses collagen expression and TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts. Arch Dermatol Res 303:563–572CrossRefPubMedGoogle Scholar
  28. 28.
    Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 4:19–24CrossRefPubMedGoogle Scholar
  29. 29.
    Wahab NA, Weston BS, Mason RM (2005) Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol 16:340–351CrossRefPubMedGoogle Scholar
  30. 30.
    Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, Brenner M, Guo G, Zhang W, Oliver N, Lin A, Yeowell D (2011) Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair 4:4CrossRefPubMedGoogle Scholar
  31. 31.
    Yosimichi G, Kubota S, Nishida T, Kondo S, Yanagita T, Nakao K, Takano-Yamamoto T, Takigawa M (2006) Roles of PKC, PI3K and JNK in multiple transduction of CCN2/CTGF signals in chondrocytes. Bone 38:853–863CrossRefPubMedGoogle Scholar
  32. 32.
    Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M (2001) CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem 268:6058–6065CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang H, Ran X, Hu CL, Qin LP, Lu Y, Peng C (2012) Therapeutic effects of liposome-enveloped Ligusticum chuanxiong essential oil on hypertrophic scars in the rabbit ear model. PLoS ONE 7:e31157CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang ZF, Zhang YG, Hu DH, Shi JH, Liu JQ, Zhao ZT, Wang HT, Bai XZ, Cai WX, Zhu HY, Tang CW (2011) Smad interacting protein 1 as a regulator of skin fibrosis in pathological scars. Burns 37:665–672CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaolong Hu
    • 1
  • Hongtao Wang
    • 1
  • Jiaqi Liu
    • 1
  • Xiaobing Fang
    • 1
  • Ke Tao
    • 1
  • Yaojun Wang
    • 1
  • Na Li
    • 1
  • Jihong Shi
    • 1
  • Yunchuan Wang
    • 1
  • Peng Ji
    • 1
  • Weixia Cai
    • 1
  • Xiaozhi Bai
    • 1
  • Xiongxiang Zhu
    • 1
  • Juntao Han
    • 1
  • Dahai Hu
    • 1
  1. 1.Department of Burns and Cutaneous Surgery, Xijing HospitalFourth Military Medical UniversityXi’anChina

Personalised recommendations