Advertisement

Archives of Dermatological Research

, Volume 305, Issue 4, pp 341–352 | Cite as

Protection against TGF-β1-induced fibrosis effects of IL-10 on dermal fibroblasts and its potential therapeutics for the reduction of skin scarring

  • Ji-Hong Shi
  • Hao Guan
  • Shan Shi
  • Wei-Xia Cai
  • Xiao-Zhi Bai
  • Xiao-Long Hu
  • Xiao-Bin Fang
  • Jia-Qi Liu
  • Ke Tao
  • Xiong-Xiang Zhu
  • Chao-Wu Tang
  • Da-Hai Hu
Original Paper

Abstract

Scarring, tightly associated with fibrosis, is a significant symptomatic clinical problem. Interleukin 10 (IL-10) has been identified as a candidate scar-improving therapy based on preclinical studies. However, the molecular mechanism of IL-10 in scar improvement is still uncertain. In this study, human dermal fibroblasts stimulated with TGF-β1 were treated with IL-10 to analyze the mRNA and some of proteins’ expression levels of type I collagen (Col1), type III collagen (Col3), alpha-smooth muscle actin (α-SMA), matrix metalloproteinase-1 (MMP1), MMP2, MMP8 and tissue inhibitor of metalloproteinase 1 (TIMP1), TIMP2 by real-time PCR and Western blot, to observe α-SMA-positive fibroblasts by immunocytochemistry. The contracture and improvement of fibroblast-populated collagen lattice (FPCL) and a murine model of wound healing were used to evaluate the scar-improving effects by histological staining. The results showed that IL-10 can significantly down-regulate the mRNA and protein expression levels of Col1, Col3, α-SMA, and up-regulate the mRNA expression levels of MMP1 and MMP8, and decrease α-SMA-positive fibroblasts. FPCL analysis showed that the IL-10 (20 ng/ml) can significantly inhibit the contracture, improve the architecture of FPCL. Wounds injected with IL-10 demonstrated that the appearance of scar was improved, the wound margin of scarring was narrow, and the deposition of collagens (Col1 and Col3) in regenerated tissue was relieved. These results provide direct evidences that IL-10 has the inhibitory effects on the excessive deposition of extracellular matrix components and fibroblast-to-myofibroblast transition, and show that IL-10 has the potential therapy in prevention and reduction of skin scarring.

Keywords

IL-10 Antifibrosis Fibroblast Fibroblast-populated collagen lattice (FPCL) Scarring Wound healing 

Notes

Acknowledgments

We thank Dr. Yi-Ling Zhao for histology technical assistance, Dr. Ying-Jun Su for revision the paper prior to submission, Dr. Na Li for skilled animal technical assistance, and Dr. Yao-Jun Wang for processing the figures. The work was supported by the Grant-in-Aid for scientific research from Xijing hospital assist in 2010 (XJZT10D04), and the National Natural Science Foundation of China (Grant Number 81272098).

Supplementary material

403_2013_1314_MOESM1_ESM.pdf (265 kb)
Supplementary material (PDF 265 kb)

References

  1. 1.
    Arai T, Abe K, Matsuoka H, Yoshida M, Mori M, Goya S, Kida H, Nishino K, Osaki T, Tachibana I, Kaneda Y, Hayashi S (2000) Introduction of the interleukin-10 gene into mice inhibited bleomycin-induced lung injury in vivo. Am J Physiol Lung Cell Mol Physiol 278:L914–L922PubMedGoogle Scholar
  2. 2.
    Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297:433–438PubMedCrossRefGoogle Scholar
  3. 3.
    Bogdan C, Vodovotz Y, Nathan C (1991) Macrophage deactivation by interleukin 10. J Exp Med 174:1549–1555PubMedCrossRefGoogle Scholar
  4. 4.
    Campaner AB, Ferreira LM, Gragnani A, Bruder JM, Cusick JL, Morgan JR (2006) Upregulation of TGF-β1 expression may be necessary but is not sufficient for excessive scarring. J Invest Dermatol 126:1168–1176PubMedCrossRefGoogle Scholar
  5. 5.
    Dahlmann-Noor AH, Martin-Martin B, Eastwood M, Khaw PT, Bailly M (2007) Dynamic protrusive cell behaviour generates force and drives early matrix contraction by fibroblasts. Exp Cell Res 313:4158–4169PubMedCrossRefGoogle Scholar
  6. 6.
    Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111PubMedCrossRefGoogle Scholar
  7. 7.
    Diao JS, Xia WS, Yi CG, Wang YM, Li B, Xia W, Liu B, Guo SZ, Sun XD (2011) Trichostatin A inhibits collagen synthesis and induces apoptosis in keloid fibroblasts. Arch Dermatol Res 303:573–580PubMedCrossRefGoogle Scholar
  8. 8.
    Eckes B, Zigrino P, Kessler D, Holtkötter O, Shephard P, Mauch C, Krieg T (2000) Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol 19:325–332PubMedCrossRefGoogle Scholar
  9. 9.
    Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O’Garra A (1991) IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146:3444–3451PubMedGoogle Scholar
  10. 10.
    Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503PubMedCrossRefGoogle Scholar
  11. 11.
    Hecker L, Jagirdar R, Jin T, Thannickal VJ (2011) Reversible differentiation of myofibroblasts by MyoD. Exp Cell Res 317:1914–1921PubMedCrossRefGoogle Scholar
  12. 12.
    Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15:1077–1081PubMedCrossRefGoogle Scholar
  13. 13.
    Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Investig Dermatol 127:526–537PubMedCrossRefGoogle Scholar
  14. 14.
    Hinz B (2010) The myofibroblast: paradigm for a mechanically active cell. J Biomech 43:146–155PubMedCrossRefGoogle Scholar
  15. 15.
    Hsu YC, Chen MJ, Yu YM, Ko SY, Chang CC (2010) Suppression of TGF-β1/SMAD pathway and extracellular matrix production in primary keloid fibroblasts by curcuminoids: its potential therapeutic use in the chemoprevention of keloid. Arch Dermatol Res 302:717–724PubMedCrossRefGoogle Scholar
  16. 16.
    Kähäri VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6:199–213PubMedCrossRefGoogle Scholar
  17. 17.
    Kondo S (2000) The roles of cytokines in photoaging. J Dermatol Sci 23(S1):S30–S36PubMedCrossRefGoogle Scholar
  18. 18.
    Leask A, Abraham DJ (2004) TGF-β signaling and the fibrotic response. FASEB J 18:816–827PubMedCrossRefGoogle Scholar
  19. 19.
    LeRoy EC, Trojanowska MI, Smith EA (1990) Cytokines and human fibrosis. Eur Cytokine Netw 1:215–219PubMedGoogle Scholar
  20. 20.
    Liechty KW, Kim HB, Adzick NS, Crombleholme TM (2000) Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg 35:866–872PubMedCrossRefGoogle Scholar
  21. 21.
    Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791PubMedCrossRefGoogle Scholar
  22. 22.
    McCartney-Francis NL, Frazier-Jessen M, Wahl SM (1998) TGF-beta: a balancing act. Int Rev Immunol 16:553–580PubMedCrossRefGoogle Scholar
  23. 23.
    Mrowietz U, Seifert O (2009) Keloid scarring: new treatments ahead. Actas Dermosifiliogr 100(Suppl 2):75–83PubMedCrossRefGoogle Scholar
  24. 24.
    Nakagome K, Dohi M, Okunishi K, Tanaka R, Miyazaki J, Yamamoto K (2006) In vivo IL-10 gene delivery attenuates bleomycin induced pulmonary fibrosis by inhibiting the production and activation of TGF-β in the lung. Thorax 61:886–894PubMedCrossRefGoogle Scholar
  25. 25.
    Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104:1435–1458PubMedCrossRefGoogle Scholar
  26. 26.
    Occleston NL, O’Kane S, Goldspink N, Ferguson MWJ (2008) New therapeutics for the prevention and reduction of scarring. Drug Discov Today 13:973–981PubMedCrossRefGoogle Scholar
  27. 27.
    O’Kane S, Ferguson MW (1997) Transforming growth factor betas and wound healing. Int J Biochem Cell Biol 29:63–78PubMedCrossRefGoogle Scholar
  28. 28.
    Ong CT, Khoo YT, Mukhopadhyay A, Do DV, Lim IJ, Aalami O, Phan TT (2007) mTOR as a potential therapeutic target for treatment of keloids and excessive scars. Exp Dermatol 16:394–404PubMedCrossRefGoogle Scholar
  29. 29.
    Overall CM, Wrana JL, Sodek J (1989) Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem 264:1860–1869PubMedGoogle Scholar
  30. 30.
    Park CH, Lee MJ, Ahn J, Kim S, Kim HH, Kim KH, Eun HC, Chung JH (2004) Heat shock-induced matrix metalloproteinase (MMP)-1 and MMP-3 are mediated through ERK and JNK activation and via an autocrine interleukin-6 loop. J Investig Dermatol 123:1012–1019PubMedCrossRefGoogle Scholar
  31. 31.
    Peranteau WH, Zhang L, Muvarak N, Badillo AT, Radu A, Zoltick PW, Liechty KW (2008) IL-10 overexpression decrease inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Investig Dermatol 128:1852–1860PubMedCrossRefGoogle Scholar
  32. 32.
    Reitamo S, Remitz A, Tamai K, Uitto J (1994) Interleukin-10 modulates type I collagen and matrix metalloprotease gene expression in cultured human skin fibroblasts. J Clin Investig 94:2489–2492PubMedCrossRefGoogle Scholar
  33. 33.
    Saito M, Yamazaki M, Maeda T, Matsumura H, Setoguchi Y, Tsuboi R (2012) Pirfenidone suppresses keloid fibroblast-embedded collagen gel contraction. Arch Dermatol Res 304:217–222PubMedCrossRefGoogle Scholar
  34. 34.
    Schottelius AJ, Mayo MW, Sartor RB, Baldwin AS Jr (1999) Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding. J Biol Chem 274:31868–31874PubMedCrossRefGoogle Scholar
  35. 35.
    Seifert O, Mrowietz U (2009) Keloid scarring: bench and bedside. Arch Dermatol Res 301:259–272PubMedCrossRefGoogle Scholar
  36. 36.
    Shi JH, Hu DH, Zhang ZF, Bai XZ, Wang HT, Zhu XX, Su YJ, Tang CW (2012) Reduced expression of microtubule-associated protein 1 light chain 3 in hypertrophic scars. Arch Dermatol Res 304:209–215PubMedCrossRefGoogle Scholar
  37. 37.
    Sidgwick GP, Bayat A (2012) Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J Eur Acad Dermatol Venereol 26:141–152PubMedCrossRefGoogle Scholar
  38. 38.
    Signer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746CrossRefGoogle Scholar
  39. 39.
    Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedCrossRefGoogle Scholar
  40. 40.
    Tang B, Zhu B, Liang Y, Bi L, Hu Z, Chen B, Zhang K, Zhu J (2011) Asiaticoside suppresses collagen expression and TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts. Arch Dermatol Res 303:563–572PubMedCrossRefGoogle Scholar
  41. 41.
    Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, Horowitz JC, Day RM, Thomas PE (2003) Myofibroblast differentiation by transforming growth factor-beta 1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 278:12384–12389PubMedCrossRefGoogle Scholar
  42. 42.
    van der Veer WM, Bloemen MC, Ulrich MM, Molema G, van Zuijlen PP, Middelkoop E, Niessen FB (2009) Potential cellular and molecular causes of hypertrophic scar. Burns 35:15–29PubMedCrossRefGoogle Scholar
  43. 43.
    Varga J, Jimenez SA (1986) Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-beta. Biochem Biophys Res Commun 138:974–980PubMedCrossRefGoogle Scholar
  44. 44.
    Vi L, de Lasa C, DiGuglilmo GM, Dagnino L (2011) Integrin-linked kinase is required for TGF-β1 induction of dermal myofibroblast differentiation. J Investig Dermatol 131:586–593PubMedCrossRefGoogle Scholar
  45. 45.
    Wang P, Wu P, Siegel MI, Egan RW, Billah MM (1995) Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 270:9558–9563PubMedCrossRefGoogle Scholar
  46. 46.
    Weiss E, Mamelak AJ, La Morgia S, Wang B, Feliciani C, Tulli A, Sander DN (2004) The role of interleukin 10 in the pathogenesis and potential treatment of skin diseases. J Am Acad Dermatol 50:657–675PubMedCrossRefGoogle Scholar
  47. 47.
    Wolfram D, Tzankov A, Pülzl P, Piza-Katzer H (2009) Hypertrophic scars and keloids-a review of their pathophysiology, risk factors, and therapeutic management. Dermatol Surg 35:171–181PubMedCrossRefGoogle Scholar
  48. 48.
    Yamamoto T, Eckes B, Krieg T (2001) Effect of interleukin-10 on the gene expression of type I collagen, fibronectin, and decorin in human skin fibroblasts: differential regulation by transforming growth factor-beta and monocyte chemoattractant protein-1. Biochem Biophys Res Commun 281:200–205PubMedCrossRefGoogle Scholar
  49. 49.
    Yuan W, Varga J (2001) Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem 276:38502–38510PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang ZF, Zhang YG, Hu DH, Shi JH, Liu JQ, Zhao ZT et al (2011) Smad interacting protein 1 as a regulator of skin fibrosis in pathological scars. Burns 37:665–672PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ji-Hong Shi
    • 1
  • Hao Guan
    • 1
  • Shan Shi
    • 1
  • Wei-Xia Cai
    • 1
  • Xiao-Zhi Bai
    • 1
  • Xiao-Long Hu
    • 1
  • Xiao-Bin Fang
    • 1
  • Jia-Qi Liu
    • 1
  • Ke Tao
    • 1
  • Xiong-Xiang Zhu
    • 1
  • Chao-Wu Tang
    • 1
  • Da-Hai Hu
    • 1
  1. 1.Department of Burns and Cutaneous Surgery, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina

Personalised recommendations