Archives of Dermatological Research

, Volume 305, Issue 4, pp 315–323 | Cite as

Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis

  • Jan Kottner
  • Andrea Lichterfeld
  • Ulrike Blume-Peytavi
Original Paper

Abstract

Transepidermal water loss (TEWL) is regarded as one of the most important parameters for characterizing skin barrier function but an agreed upon definition of what a “normal” TEWL is does not exist. In order to determine generalizable TEWL values for healthy adults, a systematic review and meta-analysis was conducted. The databases MEDLINE and EMBASE and publication lists were screened. After full-text appraisal of 398 studies, 231 studies were excluded due to unclear or insufficient reporting. 167 studies providing data about 50 skin areas were included in the final data synthesis. Pooled sample sizes ranged from n = 5 for the left cheek and the left lower back to a maximum of n = 2,838 for the right midvolar forearm area. The lowest TEWL of 2.3 (95 % CI 1.9–2.7) g/m2/h was calculated for the breast skin, the highest TEWL of 44.0 (39.8–48.2) g/m2/h for the axilla. TEWL in individuals being 65 years and above was consistently lower compared to the group of 18- to 64-year-old individuals. The quality of reporting TEWL in humans should be increased in future studies.

Keywords

Adult Aged Dermatology Humans Meta-analysis 

Notes

Acknowledgments

This research was supported by the Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Germany.

Supplementary material

403_2012_1313_MOESM1_ESM.pdf (22 kb)
Supplementary material 1 (PDF 22 kb)
403_2012_1313_MOESM2_ESM.pdf (181 kb)
Supplementary material 2 (PDF 180 kb)
403_2012_1313_MOESM3_ESM.pdf (296 kb)
Supplementary material 3 (PDF 295 kb)
403_2012_1313_MOESM4_ESM.pdf (324 kb)
Supplementary material 4 (PDF 324 kb)

References

  1. 1.
    Agner T (1992) Noninvasive measuring methods for the investigation of irritant patch test reactions. A study of patients with hand eczema, atopic dermatitis and controls. Acta Derm Venereol Suppl 173:1–26Google Scholar
  2. 2.
    Alikhan A, Wilhelm K-P, Alikhan FS, Maibach HI (2010) Transepidermal water loss and aging. In: Farage MA, Miller KW, Maibach HI (eds) Textbook of Aging Skin. Springer, Berlin, pp 695–703CrossRefGoogle Scholar
  3. 3.
    Baker H, Kligman AM (1967) Measurement of transepidermal water loss by electrical hygrometry. Instrumentation and responses to physical and chemical insults. Arch Dermatol 96(4):441–452PubMedCrossRefGoogle Scholar
  4. 4.
    Barel AO, Clarys P (1995) Study of the stratum corneum barrier function by transepidermal water loss measurements: comparison between two commercial instruments: evaporimeter and Tewameter. Skin Pharmacol 8(4):186–195PubMedCrossRefGoogle Scholar
  5. 5.
    Berardesca E, Fluhr JW (2010) Corneocyte size and cell renewal: effects of aging and sex hormones. In: Farage MA, Miller KW, Maibach HI (eds) Textbook of Aging Skin. Springer, Berlin, pp 271–275Google Scholar
  6. 6.
    Berardesca E, Maibach HI (1990) Transepidermal water loss and skin surface hydration in the non invasive assessment of stratum corneum function. Derm Beruf Umwelt 38(2):50–53PubMedGoogle Scholar
  7. 7.
    Blaak J, Lüttje D, John SM, Schürer NY (2011) Irritability of the skin barrier: a comparison of chronologically aged and photo-aged skin in elderly and young adults. Eur Geriatr Med 2:208–211CrossRefGoogle Scholar
  8. 8.
    Bock M, Wulfhorst B, John SM (2007) Site variations in susceptibility to SLS. Contact Dermat 57(2):94–96. doi: 10.1111/j.1600-0536.2007.01159.x CrossRefGoogle Scholar
  9. 9.
    Chilcott RP, Farrar R (2000) Biophysical measurements of human forearm skin in vivo: effects of site, gender, chirality and time. Skin Res Technol 6(2):64–69PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen JC, Hartman DG, Garofalo MJ, Basehoar A, Raynor B, Ashbrenner E, Akin FJ (2009) Comparison of closed chamber and open chamber evaporimetry. Skin Res Technol 15(1):51–54PubMedCrossRefGoogle Scholar
  11. 11.
    De Paepe K, Houben E, Adam R, Wiesemann F, Rogiers V (2005) Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter((R)). Skin Res Technol 11(1):61–69PubMedCrossRefGoogle Scholar
  12. 12.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188PubMedCrossRefGoogle Scholar
  13. 13.
    Dharmarajan TS (2008) Aging and the skin: the geriatrician’s perspective. In: Norman R (ed) Diagnosis of Aging Skin Diseases. Springer, London, pp 5–10Google Scholar
  14. 14.
    Elkeeb R, Hui X, Chan H, Tian L, Maibach HI (2010) Correlation of transepidermal water loss with skin barrier properties in vitro: comparison of three evaporimeters. Skin Res Technol 16(1):9–15PubMedCrossRefGoogle Scholar
  15. 15.
    Elsner P, Fluhr JW, Gehring W, Kerscher MJ, Krutmann J, Lademann J, Makrantonaki E, Wilhelm KP, Zouboulis CC (2011) Anti-aging data and support claims—consensus statement. J Dtsch Dermatol Ges 9:S1–S32PubMedGoogle Scholar
  16. 16.
    Farahmand S, Tien L, Hui X, Maibach HI (2009) Measuring transepidermal water loss: a comparative in vivo study of condenser-chamber, unventilated-chamber and open-chamber systems. Skin Res Technol 15(4):392–398PubMedCrossRefGoogle Scholar
  17. 17.
    Firooz A, Sadr B, Babakoohi S, Sarraf-Yazdy M, Fanian F, Kazerouni-Timsar A, Nassiri-Kashani M, Naghizadeh MM, Dowlati Y (2012) Variation of biophysical parameters of the skin with age, gender, and body region. Sci World J 2012:386936. doi: 10.1100/2012/386936 CrossRefGoogle Scholar
  18. 18.
    Fluhr JW, Feingold KR, Elias PM (2006) Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol 15(7):483–492PubMedCrossRefGoogle Scholar
  19. 19.
    Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM (1995) The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 95(5):2281–2290. doi: 10.1172/JCI117919 PubMedCrossRefGoogle Scholar
  20. 20.
    Grove G, Grove MJ, Zerweck C, Pierce E (1999) Comparative metrology of the evaporimeter and the DermaLab TEWL probe. Skin Res Technol 5(1):1–8CrossRefGoogle Scholar
  21. 21.
    Harvell JD, Maibach HI (1994) Percutaneous absorption and inflammation in aged skin: a review. J Am Acad Dermatol 31(6):1015–1021PubMedCrossRefGoogle Scholar
  22. 22.
    Imhof RE, De Jesus ME, Xiao P, Ciortea LI, Berg EP (2009) Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance. Int J Cosmet Sci 31(2):97–118PubMedCrossRefGoogle Scholar
  23. 23.
    Kerscher M, Williams S, Dubertret L (2007) Cosmetic dermatology and skin care. EJD 17(2):180–182PubMedGoogle Scholar
  24. 24.
    Kobayashi H, Tagami H (2004) Distinct locational differences observable in biophysical functions of the facial skin: with special emphasis on the poor functional properties of the stratum corneum of the perioral region. Int J Cosmet Sci 26(2):91–101PubMedCrossRefGoogle Scholar
  25. 25.
    Kobayashi H, Tagami H (2004) Functional properties of the surface of the vermilion border of the lips are distinct from those of the facial skin. Br J Dermatol 150(3):563–567PubMedCrossRefGoogle Scholar
  26. 26.
    Machado M, Hadgraft J, Lane ME (2010) Assessment of the variation of skin barrier function with anatomic site, age, gender and ethnicity. Int J Cosmet Sci. doi: 10.1111/j.1468-2494.2010.00587.x
  27. 27.
    Marks R (1981) Measurement of biological ageing in human epidermis. Br J Dermatol 104(6):627–633PubMedCrossRefGoogle Scholar
  28. 28.
    Mayrovitz HN, Bernal M, Brlit F, Desfor R (2012) Biophysical measures of skin tissue water: variations within and among anatomical sites and correlations between measures. Skin Res Technol. doi: 10.1111/srt.12000
  29. 29.
    Menon GK, Kligman AM (2009) Barrier functions of human skin: a holistic view. Skin Pharmacol Physiol 22(4):178–189. doi: 10.1159/000231523 PubMedCrossRefGoogle Scholar
  30. 30.
    Mohammed D, Matts PJ, Hadgraft J, Lane ME (2012) Variation of stratum corneum biophysical and molecular properties with anatomic site. AAPS J 14(4):806–812. doi: 10.1208/s12248-012-9400-3 PubMedCrossRefGoogle Scholar
  31. 31.
    Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. J Clin Epidemiol 63(8):e1–e37. doi: 10.1016/j.jclinepi.2010.03.004 PubMedCrossRefGoogle Scholar
  32. 32.
    Panisset F, Treffel P, Faivre B, Lecomte PB, Agache P (1992) Transepidermal water loss related to volar forearm sites in humans. Acta Derm Venereol 72(1):4–5Google Scholar
  33. 33.
    Pinnagoda J, Tupker RA, Agner T, Serup J (1990) Guidelines for transepidermal water loss (TEWL) measurement. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermat 22(3):164–178CrossRefGoogle Scholar
  34. 34.
    Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124(6):1099–1110. doi: 10.1111/j.1523-1747.2005.23726.x PubMedCrossRefGoogle Scholar
  35. 35.
    Roberts WE (2006) Dermatologic problems of older women. Dermatol Clin 24 (2):271–280, viii. doi: 10.1016/j.det.2006.01.012 Google Scholar
  36. 36.
    Rogers J, Harding C, Mayo A, Banks J, Rawlings A (1996) Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res 288(12):765–770PubMedCrossRefGoogle Scholar
  37. 37.
    Rogiers V (2001) EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol 14(2):117–128PubMedCrossRefGoogle Scholar
  38. 38.
    Rosado C, Pinto P, Rodrigues LM (2005) Comparative assessment of the performance of two generations of Tewameter: TM210 and TM300. Int J Cosmet Sci 27(4):237–241. doi: 10.1111/j.1467-2494.2005.00270.x PubMedCrossRefGoogle Scholar
  39. 39.
    Shah JH, Zhai H, Maibach HI (2005) Comparative evaporimetry in man. Skin Res Technol 11(3):205–208. doi: 10.1111/j.1600-0846.2005.00099.x PubMedCrossRefGoogle Scholar
  40. 40.
    Shlivko IL, Petrova GA, Zor’kina MV, Tchekalkina OE, Firsova MS, Ellinsky DO, Agrba PD, Kamensky VA, Donchenko EV (2012) Complex assessment of age-specific morphofunctional features of skin of different anatomic localizations. Skin Res Technol. doi: 10.1111/j.1600-0846.2012.00613.x
  41. 41.
    Steiner M, Aikman-Green S, Prescott GJ, Dick FD (2011) Side-by-side comparison of an open-chamber (TM 300) and a closed-chamber (Vapometer(™)) transepidermal water loss meter. Skin Res Technol. doi: 10.1111/j.1600-0846.2011.00509.x
  42. 42.
    Tagami H (2008) Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Arch Dermatol Res 300(Suppl 1):S1–S6. doi: 10.1007/s00403-007-0799-9 PubMedCrossRefGoogle Scholar
  43. 43.
    Tagami H, Kobayashi H, Kikuchi K (2002) A portable device using a closed chamber system for measuring transepidermal water loss: comparison with the conventional method. Skin Res Technol 8(1):7–12PubMedGoogle Scholar
  44. 44.
    Tagami H, Kobayashi H, Zhen XS, Kikuchi K (2001) Environmental effects on the functions of the stratum corneum. J Investig Dermatol Symp Proc 6(1):87–94. doi: 10.1046/j.0022-202x.2001.00016.x PubMedCrossRefGoogle Scholar
  45. 45.
    Takema Y, Yorimoto Y, Kawai M, Imokawa G (1994) Age-related changes in the elastic properties and thickness of human facial skin. Br J Dermatol 131(5):641–648PubMedCrossRefGoogle Scholar
  46. 46.
    Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M (2007) Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med 4(10):e297PubMedCrossRefGoogle Scholar
  47. 47.
    Waller JM, Maibach HI (2005) Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol 11(4):221–235. doi: 10.1111/j.0909-725X.2005.00151.x PubMedCrossRefGoogle Scholar
  48. 48.
    Xiao P, Imhof RE (2012) Two dimensional finite element modelling for dynamic water diffusion through stratum corneum. Int J Pharm 435(1):88–92. doi: 10.1016/j.ijpharm.2012.01.047 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jan Kottner
    • 1
  • Andrea Lichterfeld
    • 1
  • Ulrike Blume-Peytavi
    • 1
  1. 1.Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin ScienceCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations