Archives of Dermatological Research

, Volume 305, Issue 3, pp 233–239

Possible contribution of GSTP1 and other xenobiotic metabolizing genes to vitiligo susceptibility

  • Mikhail M. Minashkin
  • Lubov E. Salnikova
  • Konstantin M. Lomonosov
  • Igor V. Korobko
  • Andrey O. Tatarenko
Original Paper


Vitiligo is an acquired pigmentary disorder with several proposed pathogenesis mechanisms and complex multifactorial genetic predisposition. We analyzed 65 polymorphisms in genes potentially relevant to vitiligo pathogenesis mechanism to reveal novel and confirm reported genetic risk factors in general Russian population. We found that polymorphism rs1138272 (TC + CC) in GSTP1 gene encoding enzyme involved in xenobiotic metabolism is associated with vitiligo (Bonferroni adjusted P value 0.0015) with extraordinary high odds ratio 13.03, and haplotype analysis confirmed association of GSTP1 gene with vitiligo risk. Moreover, analysis of variations in several genes encoding enzymes of xenobiotic metabolism showed that higher risk of vitiligo is associated with higher number of risk alleles. This finding reveals possible contribution of genetic background to observed imbalance of oxidative stress control in vitiligo through cumulative effect of multiple genetic variations in xenobiotic metabolizing genes, supporting the concept of multigenic nature of vitiligo with multiple low-risk alleles cumulatively contributing to vitiligo risk.


Vitiligo Genetic susceptibility Case–control study GSTP1 gene polymorphism Xenobiotic metabolizing genes 

Supplementary material

403_2012_1301_MOESM1_ESM.pdf (200 kb)
Supplementary material 1 (PDF 199 kb)


  1. 1.
    Abramson JH (2011) WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol Perspect Innov 8(1):1PubMedCrossRefGoogle Scholar
  2. 2.
    Akey J, Jin L, Xiong M (2001) Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet 9(4):291–300PubMedCrossRefGoogle Scholar
  3. 3.
    Alikhan A, Felsten LM, Daly M, Petronic-Rosic V (2011) Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol 65(3):473–491PubMedCrossRefGoogle Scholar
  4. 4.
    Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA (2003) Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res 16(3):208–214PubMedCrossRefGoogle Scholar
  5. 5.
    Bassiouny DA, Khorshied MM (2012) Glutathione S-transferase M1 and T1 genetic polymorphism in Egyptian patients with nonsegmental vitiligo. Clin Exp Dermatol doi:10.1111/j.1365-2230.2012.04413.x
  6. 6.
    Birlea SA, Jin Y, Bennett DC, Herbstman DM, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taïeb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Fain PR, Spritz RA (2011) Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Invest Dermatol 131(2):371–381PubMedCrossRefGoogle Scholar
  7. 7.
    Birlea SA, Gowan K, Fain PR, Spritz RA (2010) Genome-wide association study of generalized vitiligo in an isolated European founder population identifies SMOC2, in close proximity to IDDM8. J Invest Dermatol 130(3):798–803PubMedCrossRefGoogle Scholar
  8. 8.
    Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD (2009) Polymorphisms of drug-metabolizing enzymes (GST, CYP2B6 and CYP3A) affect the pharmacokinetics of thiotepa and tepa. Br J Clin Pharmacol 67(1):50–60PubMedCrossRefGoogle Scholar
  9. 9.
    Guan CP, Zhou MN, Xu AE, Kang KF, Liu JF, Wei XD, Li YW, Zhao DK, Hong WS (2008) The susceptibility to vitiligo is associated with NF-E2-related factor2 (Nrf2) gene polymorphisms: a study on Chinese Han population. Exp Dermatol 17(12):1059–1062PubMedCrossRefGoogle Scholar
  10. 10.
    Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, Mailloux CM, Sufit AJ, Hutton SM, Amadi-Myers A, Bennett DC, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taïeb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Spritz RA (2010) Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med 362(18):1686–1697PubMedCrossRefGoogle Scholar
  11. 11.
    Jin Y, Birlea SA, Fain PR, Mailloux CM, Riccardi SL, Gowan K, Holland PJ, Bennett DC, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taïeb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Spritz RA (2010) Common variants in FOXP1 are associated with generalized vitiligo. Nat Genet 42(7):576–578PubMedCrossRefGoogle Scholar
  12. 12.
    Kaplan N, Morris R (2001) Prospects for association-based fine mapping of a susceptibility gene for a complex disease. Theor Popul Biol 60(3):181–191PubMedCrossRefGoogle Scholar
  13. 13.
    Kostyuk VA, Potapovich AI, Cesareo E, Brescia S, Guerra L, Valacchi G, Pecorelli A, Deeva IB, Raskovic D, De Luca C, Pastore S, Korkina LG (2010) Dysfunction of glutathione S-transferase leads to excess 4-hydroxy-2-nonenal and H(2)O(2) and impaired cytokine pattern in cultured keratinocytes and blood of vitiligo patients. Antioxid Redox Signal 13(5):607–620PubMedCrossRefGoogle Scholar
  14. 14.
    Li D, Dandara C, Parker MI (2010) The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer. BMC Genet 11:47PubMedCrossRefGoogle Scholar
  15. 15.
    Li K, Li C, Gao L, Yang L, Li M, Liu L, Zhang Z, Liu Y, Gao T (2009) A functional single-nucleotide polymorphism in the catechol-O-methyltransferase gene alter vitiligo risk in a Chinese population. Arch Dermatol Res 301(9):681–687PubMedCrossRefGoogle Scholar
  16. 16.
    Liu L, Li C, Gao J, Li K, Gao L, Gao T (2009) Genetic polymorphisms of glutathione S-transferase and risk of vitiligo in the Chinese population. J Invest Dermatol 129(11):2646–2652PubMedCrossRefGoogle Scholar
  17. 17.
    Liu N, Zhang K, Zhao H (2008) Haplotype-association analysis. Adv Genet 60:335–405PubMedCrossRefGoogle Scholar
  18. 18.
    Morris RW, Kaplan NL (2002) On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet Epidemiol 23(3):221–233PubMedCrossRefGoogle Scholar
  19. 19.
    Moyer AM, Salavaggione OE, Wu TY, Moon I, Eckloff BW, Hildebrandt MA, Schaid DJ, Wieben ED, Weinshilboum RM (2008) Glutathione S-transferase p1: gene sequence variation and functional genomic studies. Cancer Res 68(12):4791–4801PubMedCrossRefGoogle Scholar
  20. 20.
    Natarajan VT, Singh A, Kumar AA, Sharma P, Kar HK, Marrot L, Meunier JR, Natarajan K, Rani R, Gokhale RS (2010) Transcriptional upregulation of Nrf2-dependent phase II detoxification genes in the involved epidermis of vitiligo vulgaris. J Invest Dermatol 130(12):2781–2789PubMedCrossRefGoogle Scholar
  21. 21.
    Quan C, Ren YQ, Xiang LH, Sun LD, Xu AE, Gao XH, Chen HD, Pu XM, Wu RN, Liang CZ, Li JB, Gao TW, Zhang JZ, Wang XL, Wang J, Yang RY, Liang L, Yu JB, Zuo XB, Zhang SQ, Zhang SM, Chen G, Zheng XD, Li P, Zhu J, Li YW, Wei XD, Hong WS, Ye Y, Zhang Y, Wu WS, Cheng H, Dong PL, Hu DY, Li Y, Li M, Zhang X, Tang HY, Tang XF, Xu SX, He SM, Lv YM, Shen M, Jiang HQ, Wang Y, Li K, Kang XJ, Liu YQ, Sun L, Liu ZF, Xie SQ, Zhu CY, Xu Q, Gao JP, Hu WL, Ni C, Pan TM, Li Y, Yao S, He CF, Liu YS, Yu ZY, Yin XY, Zhang FY, Yang S, Zhou Y, Zhang XJ (2010) Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet 42(7):614–618PubMedCrossRefGoogle Scholar
  22. 22.
    Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929PubMedCrossRefGoogle Scholar
  23. 23.
    Spritz RA (2011) The genetics of vitiligo. J Invest Dermatol 131(E1):E18–E20PubMedGoogle Scholar
  24. 24.
    Spritz RA (2011) Recent progress in the genetics of generalized vitiligo. J Genet Genomics 38(7):271–278PubMedCrossRefGoogle Scholar
  25. 25.
    Spritz RA (2010) The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma. Genome Med 2(10):78PubMedCrossRefGoogle Scholar
  26. 26.
    Stuttgen G (1950) Hereditary aspects of vitiligo. Z Haut Geschlechtskr 9(11):451–457PubMedGoogle Scholar
  27. 27.
    Teindel H (1950) Familial vitiligo. Z Haut Geschlechtskr 9(11):457–462PubMedGoogle Scholar
  28. 28.
    Uhm YK, Yoon SH, Kang IJ, Chung JH, Yim SV, Lee MH (2007) Association of glutathione S-transferase gene polymorphisms (GSTM1 and GSTT1) of vitiligo in Korean population. Life Sci 81(3):223–227PubMedCrossRefGoogle Scholar
  29. 29.
    Xu X, Chen J (2009) One-carbon metabolism and breast cancer: an epidemiological perspective. J Genet Genomics 36(4):203–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mikhail M. Minashkin
    • 1
  • Lubov E. Salnikova
    • 2
    • 3
  • Konstantin M. Lomonosov
    • 5
  • Igor V. Korobko
    • 2
    • 4
  • Andrey O. Tatarenko
    • 1
  1. 1.Center for Innovative Biotechnologies “Allele”MoscowRussia
  2. 2.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  3. 3.N.I. Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  4. 4.Vitiligo Research FoundationNew YorkUSA
  5. 5.Department of Skin and Venereal DiseasesI.M. Sechenov Moscow Medical AcademyMoscowRussia

Personalised recommendations