Archives of Dermatological Research

, Volume 304, Issue 9, pp 689–697 | Cite as

Oxidative stress markers are increased since early stages of infection in syphilitic patients

  • Marylise Hébert-Schuster
  • Didier Borderie
  • Philippe A. Grange
  • Hervé Lemarechal
  • Niloufar Kavian-Tessler
  • Frédéric Batteux
  • Nicolas Dupin
Original Paper


Clinical symptoms of syphilis are the consequence of the spirochete propensity to induce persistent chronic inflammation, which could participate to oxidative stress increase. The present study was designed to evaluate the level of oxidative stress biomarkers and antioxidant defences in a cohort of syphilitic patients. Serum oxidative status was explored in 63 patients diagnosed with early syphilis, 34 consulting patients negative for syphilis and 19 healthy controls. Total plasma thioredoxin (Trx) and thiols were determined as antioxidant capacity markers, °NO, advanced oxidation protein products (AOPP) and protein carbonyl levels as oxidative stress status biomarkers, and CRP as marker of inflammation. Mean serum levels of Trx, AOPP, carbonyls, and nitrates/nitrites were significantly higher, whereas thiols level was lower in syphilitic patients compared to non-syphilitic patients and healthy controls (respectively, p < 0.05/p < 0.01 for Trx, p < 0.005/p < 0.0001 for AOPP, p < 0.05/p < 0.005 for carbonyls, p < 0.005/p < 0.05 for nitrates/nitrites and p < 0.01/p < 0.0001 for thiols). According to the stage of the disease, results highlighted a marked and sustained oxidative stress imbalance from the first stage to the latent period of the disease. Moreover, syphilitic patients presented a low inflammation status reflected by median of CRP level (1.7 mg/L, range 5th–95th percentile from <0.1 to 33.7 mg/L), correlated with antioxidant capacity decrease (thiols) at stage 1 (r = −0.725; p < 0.0001) and nitrosative stress increase (nitrates/nitrites) at stage 2 and latent (respectively, r = 0.285, p < 0.05 and r = 0.650, p < 0.05). These findings indicate that at all stages of the disease, despite a low-grade inflammatory state, syphilis infection generates a major oxidative and nitrosative stress which may be involved in the pathophysiology of the disease.


Syphilis Oxidative stress Nitrosative stress Inflammation Serum biomarkers 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Allanore Y, Borderie D, Hilliquin P, Hernvann A, Levacher M, Lemarechal H, Ekindjian OG, Kahan A (2001) Low levels of nitric oxide (NO) in systemic sclerosis: inducible NO synthase production is decreased in cultured peripheral blood monocyte/macrophage cells. Rheumatology (Oxford) 40(10):1089–1096CrossRefGoogle Scholar
  2. 2.
    Arner ES, Zhong L, Holmgren A (1999) Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods Enzymol 300:226–239PubMedCrossRefGoogle Scholar
  3. 3.
    Baughn RE, Musher DM (2005) Secondary syphilitic lesions. Clin Microbiol Rev 18(1):205–216PubMedCrossRefGoogle Scholar
  4. 4.
    CDC (1997) Case definition for infectious conditions under public health surveillance. Morb Mortal Wkly Rep 46 (RR-10)Google Scholar
  5. 5.
    De Groote MA, Fang FC (1995) NO inhibitions: antimicrobial properties of nitric oxide. Clin Infect Dis 21(Suppl 2):S162–S165PubMedCrossRefGoogle Scholar
  6. 6.
    Farhi D, Benhaddou N, Grange P, Zizi N, Deleuze J, Morini JP, Gerhardt P, Krivine A, Avril MF, Dupin N (2009) Clinical and serologic baseline and follow-up features of syphilis according to HIV status in the post-HAART era. Medicine (Baltimore) 88(6):331–340CrossRefGoogle Scholar
  7. 7.
    Farhi D, Zizi N, Grange P, Benhaddou N, Gerhardt P, Avril MF, Dupin N (2009) The epidemiological and clinical presentation of syphilis in a venereal disease centre in Paris, France. A cohort study of 284 consecutive cases over the period 2000–2007. Eur J Dermatol 19(5):484–489PubMedGoogle Scholar
  8. 8.
    Farrell AJ, Blake DR (1996) Nitric oxide. Ann Rheum Dis 55(1):7–20PubMedCrossRefGoogle Scholar
  9. 9.
    Fox A (1990) Role of bacterial debris in inflammatory diseases of the joint and eye. Apmis 98(11):957–968PubMedCrossRefGoogle Scholar
  10. 10.
    Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281(5375):375–388PubMedCrossRefGoogle Scholar
  11. 11.
    Grange PA, Gressier L, Dion PL, Farhi D, Benhaddou N, Gerhardt P, Morini JP, Deleuze J, Pantoja C, Bianchi A, Lassau F, Avril MF, Janier M, Dupin N (2012) Evaluation of a PCR test for detection of Treponema pallidum in swabs and blood. J Clin Microbiol 50(3):546–552PubMedCrossRefGoogle Scholar
  12. 12.
    Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine, 3rd edn. Oxford Science Publications, LondonGoogle Scholar
  13. 13.
    Hook EW 3rd, Marra CM (1992) Acquired syphilis in adults. N Engl J Med 326(16):1060–1069PubMedCrossRefGoogle Scholar
  14. 14.
    Hu ML (1994) Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 233:380–385PubMedCrossRefGoogle Scholar
  15. 15.
    Jovanovic T, Ascenso C, Hazlett KR, Sikkink R, Krebs C, Litwiller R, Benson LM, Moura I, Moura JJ, Radolf JD, Huynh BH, Naylor S, Rusnak F (2000) Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase. J Biol Chem 275(37):28439–28448PubMedCrossRefGoogle Scholar
  16. 16.
    Lafond RE, Lukehart SA (2006) Biological basis for syphilis. Clin Microbiol Rev 19(1):29–49PubMedCrossRefGoogle Scholar
  17. 17.
    Lemarechal H, Allanore Y, Chenevier-Gobeaux C, Ekindjian OG, Kahan A, Borderie D (2006) High redox thioredoxin but low thioredoxin reductase activities in the serum of patients with rheumatoid arthritis. Clin Chim Acta 367(1–2):156–161PubMedCrossRefGoogle Scholar
  18. 18.
    Lemarechal H, Allanore Y, Chenevier-Gobeaux C, Kahan A, Ekindjian OG, Borderie D (2006) Serum protein oxidation in patients with rheumatoid arthritis and effects of infliximab therapy. Clin Chim Acta 372(1–2):147–153PubMedCrossRefGoogle Scholar
  19. 19.
    Mandas A, Iorio EL, Congiu MG, Balestrieri C, Mereu A, Cau D, Dessi S, Curreli N (2009) Oxidative imbalance in HIV-1 infected patients treated with antiretroviral therapy. J Biomed Biotechnol 2009:749575PubMedCrossRefGoogle Scholar
  20. 20.
    Martinez C, Garcia-Martin E, Ladero JM, Herraez O, Ortega L, Taxonera C, Suarez A, Diaz-Rubio M, Agundez JA (2007) GSTT1 and GSTM1 null genotypes may facilitate hepatitis C virus infection becoming chronic. J Infect Dis 195(9):1320–1323PubMedCrossRefGoogle Scholar
  21. 21.
    Moore MW, Cruz AR, LaVake CJ, Marzo AL, Eggers CH, Salazar JC, Radolf JD (2007) Phagocytosis of Borrelia burgdorferi and Treponema pallidum potentiates innate immune activation and induces gamma interferon production. Infect Immun 75(4):2046–2062PubMedCrossRefGoogle Scholar
  22. 22.
    Nakamura H, Herzenberg LA, Bai J, Araya S, Kondo N, Nishinaka Y, Herzenberg LA, Yodoi J (2001) Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc Natl Acad Sci USA 98(26):15143–15148PubMedCrossRefGoogle Scholar
  23. 23.
    Nakamura T, Nakamura H, Hoshino T, Ueda S, Wada H, Yodoi J (2005) Redox regulation of lung inflammation by thioredoxin. Antioxid Redox Signal 7(1-2):60–71PubMedCrossRefGoogle Scholar
  24. 24.
    Ngondi JL, Oben J, Forkah DM, Etame LH, Mbanya D (2006) The effect of different combination therapies on oxidative stress markers in HIV infected patients in Cameroon. AIDS Res Ther 3:19PubMedCrossRefGoogle Scholar
  25. 25.
    Norris SJ, Cox DL, Weinstock GM (2001) Biology of Treponema pallidum: correlation of functional activities with genome sequence data. J Mol Microbiol Biotechnol 3(1):37–62PubMedGoogle Scholar
  26. 26.
    Parsonage D, Desrosiers DC, Hazlett KR, Sun Y, Nelson KJ, Cox DL, Radolf JD, Poole LB (2010) Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum. Proc Natl Acad Sci USA 107(14):6240–6245PubMedCrossRefGoogle Scholar
  27. 27.
    Peterman TA, Furness BW (2007) The resurgence of syphilis among men who have sex with men. Curr Opin Infect Dis 20(1):54–59PubMedCrossRefGoogle Scholar
  28. 28.
    Poole LB (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433(1):240–254PubMedCrossRefGoogle Scholar
  29. 29.
    Radolf JD (1996) Treponema: medical microbiology, 4th edn. University of Texas Medical Branch at Galveston, GalvestonGoogle Scholar
  30. 30.
    Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363PubMedCrossRefGoogle Scholar
  31. 31.
    Rodger AJ, Fox Z, Lundgren JD, Kuller LH, Boesecke C, Gey D, Skoutelis A, Goetz MB, Phillips AN (2009) Activation and coagulation biomarkers are independent predictors of the development of opportunistic disease in patients with HIV infection. J Infect Dis 200(6):973–983PubMedCrossRefGoogle Scholar
  32. 32.
    Salazar JC, Hazlett KR, Radolf JD (2002) The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect 4(11):1133–1140PubMedCrossRefGoogle Scholar
  33. 33.
    Shah V, Lyford G, Gores G, Farrugia G (2004) Nitric oxide in gastrointestinal health and disease. Gastroenterology 126(3):903–913PubMedCrossRefGoogle Scholar
  34. 34.
    Simms I, Fenton KA, Ashton M, Turner KM, Crawley-Boevey EE, Gorton R, Thomas DR, Lynch A, Winter A, Fisher MJ, Lighton L, Maguire HC, Solomou M (2005) The re-emergence of syphilis in the United Kingdom: the new epidemic phases. Sex Transm Dis 32(4):220–226PubMedCrossRefGoogle Scholar
  35. 35.
    Stary G, Klein I, Bruggen MC, Kohlhofer S, Brunner PM, Spazierer D, Mullauer L, Petzelbauer P, Stingl G (2010) Host defense mechanisms in secondary syphilitic lesions: a role for IFN-gamma-/IL-17-producing CD8+ T cells? Am J Pathol 177(5):2421–2432PubMedCrossRefGoogle Scholar
  36. 36.
    Stenger S, Donhauser N, Thuring H, Rollinghoff M, Bogdan C (1996) Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J Exp Med 183(4):1501–1514PubMedCrossRefGoogle Scholar
  37. 37.
    Sumida Y, Nakashima T, Yoh T, Nakajima Y, Ishikawa H, Mitsuyoshi H, Sakamoto Y, Okanoue T, Kashima K, Nakamura H, Yodoi J (2000) Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatol 33(4):616–622PubMedCrossRefGoogle Scholar
  38. 38.
    Tipple C, Hanna MO, Hill S, Daniel J, Goldmeier D, McClure MO, Taylor GP (2011) Getting the measure of syphilis: qPCR to better understand early infection. Sex Transm Infect 87(6):479–485PubMedCrossRefGoogle Scholar
  39. 39.
    Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49(5):1304–1313PubMedCrossRefGoogle Scholar
  40. 40.
    Witko-Sarsat V, Friedlander M, Nguyen Khoa T, Capeillere-Blandin C, Nguyen AT, Canteloup S, Dayer JM, Jungers P, Drueke T, Descamps-Latscha B (1998) Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 161(5):2524–2532PubMedGoogle Scholar
  41. 41.
    Yazici C, Kose K, Calis M, Kuzuguden S, Kirnap M (2004) Protein oxidation status in patients with ankylosing spondylitis. Rheumatology (Oxford) 43(10):1235–1239CrossRefGoogle Scholar
  42. 42.
    Zetola NM, Klausner JD (2007) Syphilis and HIV infection: an update. Clin Infect Dis 44(9):1222–1228PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marylise Hébert-Schuster
    • 1
    • 2
  • Didier Borderie
    • 1
    • 2
  • Philippe A. Grange
    • 3
  • Hervé Lemarechal
    • 2
  • Niloufar Kavian-Tessler
    • 3
    • 4
  • Frédéric Batteux
    • 3
    • 4
  • Nicolas Dupin
    • 3
    • 5
  1. 1.EA 4466, Département de Biologie Expérimentale Métabolique et Clinique, Faculté des Sciences Pharmaceutiques et BiologiquesUniversité Paris Descartescedex 6 ParisFrance
  2. 2.Unité Fonctionnelle « Inflammation et stress oxydant », Service de BiochimieGroupe Hospitalier Cochin-Hôtel Dieu (AP-HP)ParisFrance
  3. 3.EA 1833, Laboratoire de Recherche en Dermatologie, Faculté de MédecineUniversité Paris DescartesParisFrance
  4. 4.Service d’ImmunologieGroupe Hospitalier Cochin-Hôtel Dieu (AP-HP)ParisFrance
  5. 5.Service de Dermatologie et VénérologieGroupe Hospitalier Cochin-Hôtel Dieu (AP-HP)ParisFrance

Personalised recommendations