Archives of Dermatological Research

, Volume 304, Issue 8, pp 673–678 | Cite as

Phytosphingosine-1-phosphate represses the hydrogen peroxide-induced activation of c-Jun N-terminal kinase in human dermal fibroblasts through the phosphatidylinositol 3-kinase/Akt pathway

  • Jeong Pyo Lee
  • Hwa Jun Cha
  • Kwang Sik Lee
  • Kun Kook Lee
  • Ju Hyun Son
  • Kwang Nyeon Kim
  • Dong Kyu LeeEmail author
  • Sungkwan AnEmail author
Short Communication


Dermal fibroblasts are differentiated mesenchymal cells that regulate the extracellular matrix through the production of dermis components. Dermal fibroblasts can be damaged by reactive oxygen species induced by ultraviolet rays and chemicals. In addition to its effects on the dermis, oxidative stress poses a major threat to organisms and is believed to play an essential role in many disease processes. In this study, we show that human dermal fibroblasts (HDFs) express sphingosine-1-phosphate (S1P) receptors S1P1, S1P2, and S1P3. In addition, cell viability of HDFs is increased by phytosphingosine-1-phosphate (PhS1P) via regulation of the Jun N-terminal kinase (JNK)/Akt pathway. Interestingly, regulation of the JNK/Akt pathway by PhS1P attenuated H2O2-induced cell growth arrest. Together, our data indicate that PhS1P attenuates H2O2-induced growth arrest through regulation of the signal molecules Akt and JNK, and suggest that PhS1P may have value as an anti-aging material in cosmetics and medicine.


Phytosphingosine-1-phosphate Akt JNK Hydroxyl peroxide Dermal fibroblast 



We would like to thank all other members of Coreana Cosmetics Co., Ltd. and Damy Chemical Co., Ltd. for their support. This paper was supported by Konkuk University in 2011.

Supplementary material

403_2012_1241_MOESM1_ESM.pdf (89 kb)
Supplementary material 1 (PDF 88 kb)


  1. 1.
    Aikin R, Maysinger D, Rosenberg L (2004) Cross-talk between PI3K/AKT and JNK mediates survival of isolated human islets. Endocrinology 145(10):4522–4531PubMedCrossRefGoogle Scholar
  2. 2.
    Bogoyevitch MA (2006) The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bioessays 28(9):923–934PubMedCrossRefGoogle Scholar
  3. 3.
    Candelore MR, Wright MJ, Tota LM, Milligan J, Shei GJ, Bergstrom JD, Mandala SM (2002) Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor. Biochem Biophys Res Commun 297(3):600–606PubMedCrossRefGoogle Scholar
  4. 4.
    Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83PubMedCrossRefGoogle Scholar
  5. 5.
    Chen FG, Zhang WJ, Bi D, Liu W, Wei X, Chen FF, Zhu L, Cui L, Cao Y (2007) Clonal analysis of nestin(−) vimentin(+) multipotent fibroblasts isolated from human dermis. J Cell Sci 120(Pt 16):2875–2883PubMedCrossRefGoogle Scholar
  6. 6.
    Chung N, Jenkins G, Hannun YA, Heitman J, Obeid LM (2000) Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem 275(23):17229–17232PubMedCrossRefGoogle Scholar
  7. 7.
    Crigler L, Kazhanie A, Yoon TJ, Zakhari J, Anders J, Taylor B, Virador VM (2007) Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 21(9):2050–2063PubMedCrossRefGoogle Scholar
  8. 8.
    Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585(2–3):153–162PubMedGoogle Scholar
  9. 9.
    Giro MG, Oikarinen AI, Oikarinen H, Sephel G, Uitto J, Davidson JM (1985) Demonstration of elastin gene expression in human skin fibroblast cultures and reduced tropoelastin production by cells from a patient with atrophoderma. J Clin Invest 75(2):672–678PubMedCrossRefGoogle Scholar
  10. 10.
    Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758(12):2016–2026PubMedCrossRefGoogle Scholar
  11. 11.
    Hla T, Lee MJ, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids–receptor revelations. Science 294(5548):1875–1878PubMedCrossRefGoogle Scholar
  12. 12.
    Hofmann U, Burkard N, Vogt C, Thoma A, Frantz S, Ertl G, Ritter O, Bonz A (2009) Protective effects of sphingosine-1-phosphate receptor agonist treatment after myocardial ischaemia-reperfusion. Cardiovasc Res 83(2):285–293PubMedCrossRefGoogle Scholar
  13. 13.
    Inagaki Y, Pham TT, Fujiwara Y, Kohno T, Osborne DA, Igarashi Y, Tigyi G, Parrill AL (2005) Sphingosine 1-phosphate analogue recognition and selectivity at S1P4 within the endothelial differentiation gene family of receptors. Biochem J 389(Pt 1):187–195PubMedGoogle Scholar
  14. 14.
    Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–1912PubMedCrossRefGoogle Scholar
  15. 15.
    Karin M, Gallagher E (2005) From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57(4–5):283–295PubMedCrossRefGoogle Scholar
  16. 16.
    Kim MK, Lee HY, Kwak JY, Park JI, Yun J, Bae YS (2006) Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation. Biochem Biophys Res Commun 345(1):67–73PubMedCrossRefGoogle Scholar
  17. 17.
    Kim AH, Khursigara G, Sun X, Franke TF, Chao MV (2007) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21(3):893–901CrossRefGoogle Scholar
  18. 18.
    Kim MK, Park KS, Lee H, Kim YD, Yun J, Bae YS (2007) Phytosphingosine-1-phosphate stimulates chemotactic migration of L2071 mouse fibroblasts via pertussis toxin-sensitive G-proteins. Exp Mol Med 39(2):185–194PubMedGoogle Scholar
  19. 19.
    Kligman LH, Gebre M, Alper R, Kefalides NA (1989) Collagen metabolism in ultraviolet irradiated hairless mouse skin and its correlation to histochemical observations. J Invest Dermatol 93(2):210–214PubMedCrossRefGoogle Scholar
  20. 20.
    Kluk MJ, Hla T (2002) Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta 1582(1–3):72–80PubMedGoogle Scholar
  21. 21.
    Meier KD, Deloche O, Kajiwara K, Funato K, Riezman H (2006) Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae. Mol Biol Cell 17(3):1164–1175PubMedCrossRefGoogle Scholar
  22. 22.
    Mingo-Sion AM, Marietta PM, Koller E, Wolf DM, Van Den Berg CL (2004) Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 23(2):596–604PubMedCrossRefGoogle Scholar
  23. 23.
    Pata MO, Hannun YA, Ng CK (2010) Plant sphingolipids: decoding the enigma of the Sphinx. New Phytol 185(3):611–630PubMedCrossRefGoogle Scholar
  24. 24.
    Petersen MJ, Hansen C, Craig S (1992) Ultraviolet A irradiation stimulates collagenase production in cultured human fibroblasts. J Invest Dermatol 99(4):440–444PubMedCrossRefGoogle Scholar
  25. 25.
    Saba JD, Hla T (2004) Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 94(6):724–734PubMedCrossRefGoogle Scholar
  26. 26.
    Shindo Y, Hashimoto T (1998) Ultraviolet B-induced cell death in four cutaneous cell lines exhibiting different enzymatic antioxidant defences: involvement of apoptosis. J Dermatol Sci 17(2):140–150PubMedCrossRefGoogle Scholar
  27. 27.
    Spiegel S, Cuvillier O, Edsall LC, Kohama T, Menzeleev R, Olah Z, Olivera A, Pirianov G, Thomas DM, Tu Z, Van Brocklyn JR, Wang F (1998) Sphingosine-1-phosphate in cell growth and cell death. Ann N Y Acad Sci 845:11–18PubMedCrossRefGoogle Scholar
  28. 28.
    Spiegel S, Cuvillier O, Edsall L, Kohama T, Menzeleev R, Olivera A, Thomas D, Tu Z, Van Brocklyn J, Wang F (1998) Roles of sphingosine-1-phosphate in cell growth, differentiation, and death. Biochemistry (Mosc) 63(1):69–73Google Scholar
  29. 29.
    Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277(29):25851–258514PubMedCrossRefGoogle Scholar
  30. 30.
    Taha TA, Mullen TD, Obeid LM (2006) A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochim Biophys Acta 1758(12):2027–2036PubMedCrossRefGoogle Scholar
  31. 31.
    Takuwa N, Du W, Kaneko E, Okamoto Y, Yoshioka K, Takuwa Y (2011) Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1—Jekyll Hidden behind Hyde. Am J Cancer Res 1(4):460–481PubMedGoogle Scholar
  32. 32.
    Takuwa Y, Du W, Qi X, Okamoto Y, Takuwa N, Yoshioka K (2010) Roles of sphingosine-1-phosphate signaling in angiogenesis. World J Biol Chem 1(10):298–306PubMedCrossRefGoogle Scholar
  33. 33.
    Takuwa Y, Takuwa N, Sugimoto N (2002) The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. J Biochem 131(6):767–771PubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka H, Okada T, Konishi H, Tsuji T (1993) The effect of reactive oxygen species on the biosynthesis of collagen and glycosaminoglycans in cultured human dermal fibroblasts. Arch Dermatol Res 285(6):352–355PubMedCrossRefGoogle Scholar
  35. 35.
    Toma JG, Akhavan M, Fernandes KJ, Barnabé-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784PubMedCrossRefGoogle Scholar
  36. 36.
    Vlahopoulos S, Zoumpourlis VC (2004) JNK: a key modulator of intracellular signaling. Biochemistry (Mosc) 69(8):844–854CrossRefGoogle Scholar
  37. 37.
    Wu J, Sun J, Xue Y (2010) Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett 199(3):269–276PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jeong Pyo Lee
    • 1
  • Hwa Jun Cha
    • 2
  • Kwang Sik Lee
    • 1
  • Kun Kook Lee
    • 1
  • Ju Hyun Son
    • 4
  • Kwang Nyeon Kim
    • 4
  • Dong Kyu Lee
    • 5
    Email author
  • Sungkwan An
    • 2
    • 3
    Email author
  1. 1.Coreana Cosmetics Co., Ltd.Cheonan-siRepublic of Korea
  2. 2.Functional Genoproteome Research CentreKonkuk UniversitySeoulRepublic of Korea
  3. 3.LIFEnGENE, Inc.SeoulRepublic of Korea
  4. 4.Damy Chemical Co., Ltd.SeoulRepublic of Korea
  5. 5.Industrial Engineering ChemistryChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations