Archives of Dermatological Research

, Volume 303, Issue 10, pp 727–736

Inhibitory effects of TRPV1 blocker on UV-induced responses in the hairless mice

  • Young Mee Lee
  • So Min Kang
  • Se Rah Lee
  • Kyung Hwan Kong
  • Jeong Yoon Lee
  • Eun Ju Kim
  • Jin Ho Chung
Original Paper

Abstract

The transient receptor potential vanilloid 1 (TRPV1) channel can be activated by vanilloids, exposure to ultraviolet (UV) irradiation, heat, or protons, and conditions that occur during tissue injury. In the present study, we investigated whether or not TRPV1-specific blocker, 5′-iodoresiniferatoxin (I-RTX), can reduce UV-induced matrix metalloproteinases (MMPs), pro-inflammatory cytokines, cyclooxygenase (COX)-2, and p53 expression in the skin of hairless mice. Our results showed that I-RTX inhibited UV-induced skin thickening, as measured by a caliper, or in hematoxylin and eosin (H&E)-stained sections. UV-induced mRNA and protein expression of MMP-13, MMP-9, MMP-3, and MMP-2 was significantly reduced by I-RTX. We also observed the inhibitory effects of I-RTX on UV-induced mRNA expression of the pro-inflammatory cytokines, interleukin (IL)-1β, IL-2, IL-4, and tumor necrosis factor-α. UV-induced COX-2 and p53 protein expression was also significantly decreased by I-RTX. From the above results, we suggest that TRPV1-specific blocker, I-RTX, could prevent UV-induced skin responses, and provide new insight into development of effective therapeutic methods for photoaging.

Keywords

TRPV1 5′-Iodoresiniferatoxin (I-RTX) UV irradiation UV-induced skin responses 

Abbreviations

cDNA

Complementary deoxyribonucleic acid

COX-2

Cyclooxygenase-2

H&E

Hematoxylin and eosin

IL-1β

Interleukin-1beta

IL-2

Interleukin-2

IL-4

Interleukin-4

I-RTX

5′-Iodoresiniferatoxin

MMP-1

Matrix metalloproteinases-1

MMP-2

Matrix metalloproteinases-2

MMP-3

Matrix metalloproteinases-3

MMP-9

Matrix metalloproteinases-9

MMP-13

Matrix metalloproteinases-13

mRNA

Messenger ribonucleic acid

PG

Prostaglandin

RT-PCR

Reverse transcriptase-polymerase chain reaction

TNF-α

Tumor necrosis factor-alpha

TRPV1

Transient receptor potential vanilloid 1

UV

Ultraviolet

References

  1. 1.
    Adderley SR, Fitzgerald DJ (1999) Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 274(8):5038–5046PubMedCrossRefGoogle Scholar
  2. 2.
    Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93(24):13742–13747PubMedCrossRefGoogle Scholar
  3. 3.
    Amantini C, Ballarini P, Caprodossi S, Nabissi M, Morelli MB, Lucciarini R, Cardarelli MA, Mammana G, Santoni G (2009) Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis 30(8):1320–1329. doi:10.1093/carcin/bgp138 PubMedCrossRefGoogle Scholar
  4. 4.
    Bernstein EF, Chen YQ, Tamai K, Shepley KJ, Resnik KS, Zhang H, Tuan R, Mauviel A, Uitto J (1994) Enhanced elastin and fibrillin gene expression in chronically photodamaged skin. J Invest Dermatol 103(2):182–186PubMedCrossRefGoogle Scholar
  5. 5.
    Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CS, Yeats JC (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107(2):544–552PubMedGoogle Scholar
  6. 6.
    Carsberg CJ, Ohanian J, Friedmann PS (1995) Ultraviolet radiation stimulates a biphasic pattern of 1,2-diacylglycerol formation in cultured human melanocytes and keratinocytes by activation of phospholipases C and D. Biochem J 305(Pt 2):471–477PubMedGoogle Scholar
  7. 7.
    Chung JH (2003) Photoaging in Asians. Photodermatol Photoimmunol Photomed 19(3):109–121PubMedCrossRefGoogle Scholar
  8. 8.
    Chung JH, Seo JY, Choi HR, Lee MK, Youn CS, Rhie G, Cho KH, Kim KH, Park KC, Eun HC (2001) Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J Invest Dermatol 117(5):1218–1224PubMedCrossRefGoogle Scholar
  9. 9.
    Chung JH, Seo JY, Lee MK, Eun HC, Lee JH, Kang S, Fisher GJ, Voorhees JJ (2002) Ultraviolet modulation of human macrophage metalloelastase in human skin in vivo. J Invest Dermatol 119(2):507–512PubMedCrossRefGoogle Scholar
  10. 10.
    Clark JG, Kostal KM, Marino BA (1982) Modulation of collagen production following bleomycin-induced pulmonary fibrosis in hamsters. Presence of a factor in lung that increases fibroblast prostaglandin E2 and cAMP and suppresses fibroblast proliferation and collagen production. J Biol Chem 257(14):8098–8105PubMedGoogle Scholar
  11. 11.
    Denda M, Fuziwara S, Inoue K, Denda S, Akamatsu H, Tomitaka A, Matsunaga K (2001) Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun 285(5):1250–1252PubMedCrossRefGoogle Scholar
  12. 12.
    El-Abaseri TB, Fuhrman J, Trempus C, Shendrik I, Tennant RW, Hansen LA (2005) Chemoprevention of UV light-induced skin tumorigenesis by inhibition of the epidermal growth factor receptor. Cancer Res 65(9):3958–3965PubMedCrossRefGoogle Scholar
  13. 13.
    Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379(6563):335–339PubMedCrossRefGoogle Scholar
  14. 14.
    Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ (2002) Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138(11):1462–1470PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ (1997) Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 337(20):1419–1428PubMedCrossRefGoogle Scholar
  16. 16.
    Herschman HR, Xie W, Reddy S (1995) Inflammation, reproduction, cancer and all that…. The regulation and role of the inducible prostaglandin synthase. Bioessays 17(12):1031–1037PubMedCrossRefGoogle Scholar
  17. 17.
    Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29(4):577–580PubMedCrossRefGoogle Scholar
  18. 18.
    Huang LC, Clarkin KC, Wahl GM (1996) Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci USA 93(10):4827–4832PubMedCrossRefGoogle Scholar
  19. 19.
    Inomata S, Matsunaga Y, Amano S, Takada K, Kobayashi K, Tsunenaga M, Nishiyama T, Kohno Y, Fukuda M (2003) Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse. J Invest Dermatol 120(1):128–134PubMedCrossRefGoogle Scholar
  20. 20.
    Ito K, Nakazato T, Yamato K, Miyakawa Y, Yamada T, Hozumi N, Segawa K, Ikeda Y, Kizaki M (2004) Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res 64(3):1071–1078PubMedCrossRefGoogle Scholar
  21. 21.
    Jenkins G (2002) Molecular mechanisms of skin ageing. Mech Ageing Dev 123(7):801–810PubMedCrossRefGoogle Scholar
  22. 22.
    Jin XJ, Kim EJ, Oh IK, Kim YK, Park CH, Chung JH (2010) Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo. J Korean Med Sci 25(6):930–937. doi:10.3346/jkms.2010.25.6.930 PubMedCrossRefGoogle Scholar
  23. 23.
    Kahari VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6(5):199–213PubMedCrossRefGoogle Scholar
  24. 24.
    Kligman LH (1996) The hairless mouse model for photoaging. Clin Dermatol 14(2):183–195PubMedCrossRefGoogle Scholar
  25. 25.
    Kligman LH, Akin FJ, Kligman AM (1985) The contributions of UVA and UVB to connective tissue damage in hairless mice. J Invest Dermatol 84(4):272–276PubMedCrossRefGoogle Scholar
  26. 26.
    Kulms D, Schwarz T (2000) Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed 16(5):195–201PubMedCrossRefGoogle Scholar
  27. 27.
    Lee YM, Kim YK, Chung JH (2009) Increased expression of TRPV1 channel in intrinsically aged and photoaged human skin in vivo. Exp Dermatol 18(5):431–436PubMedCrossRefGoogle Scholar
  28. 28.
    Lee YM, Kim YK, Kim KH, Park SJ, Kim SJ, Chung JH (2009) A novel role for the TRPV1 channel in UV-induced matrix metalloproteinase (MMP)-1 expression in HaCaT cells. J Cell Physiol 219(3):766–775PubMedCrossRefGoogle Scholar
  29. 29.
    Lee YM, Li WH, Kim YK, Kim KH, Chung JH (2008) Heat-induced MMP-1 expression is mediated by TRPV1 through PKCalpha signaling in HaCaT cells. Exp Dermatol 17(10):864–870. doi:10.1111/j.1600-0625.2008.00738.x PubMedCrossRefGoogle Scholar
  30. 30.
    Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331. S0092-8674(00)81871-1[pii]PubMedCrossRefGoogle Scholar
  31. 31.
    Li WH, Lee YM, Kim JY, Kang S, Kim S, Kim KH, Park CH, Chung JH (2007) Transient receptor potential vanilloid-1 mediates heat-shock-induced matrix metalloproteinase-1 expression in human epidermal keratinocytes. J Invest Dermatol 127(10):2328–2335. doi:10.1038/sj.jid.5700880 PubMedCrossRefGoogle Scholar
  32. 32.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, CA) 25(4):402–408CrossRefGoogle Scholar
  33. 33.
    Ma F, Zhang L, Westlund KN (2009) Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons. Mol Pain 5:31. doi:10.1186/1744-8069-5-31 PubMedCrossRefGoogle Scholar
  34. 34.
    Mauviel A, Halcin C, Vasiloudes P, Parks WC, Kurkinen M, Uitto J (1994) Uncoordinate regulation of collagenase, stromelysin, and tissue inhibitor of metalloproteinases genes by prostaglandin E2: selective enhancement of collagenase gene expression in human dermal fibroblasts in culture. J Cell Biochem 54(4):465–472PubMedCrossRefGoogle Scholar
  35. 35.
    Mezey E, Toth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, Guo A, Blumberg PM, Szallasi A (2000) Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci USA 97(7):3655–3660PubMedCrossRefGoogle Scholar
  36. 36.
    Mullauer L, Gruber P, Sebinger D, Buch J, Wohlfart S, Chott A (2001) Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutat Res 488(3):211–231PubMedCrossRefGoogle Scholar
  37. 37.
    Naderi-Hachtroudi L, Peters T, Brenneisen P, Meewes C, Hommel C, Razi-Wolf Z, Schneider LA, Schuller J, Wlaschek M, Scharffetter-Kochanek K (2002) Induction of manganese superoxide dismutase in human dermal fibroblasts: a UV-B-mediated paracrine mechanism with the release of epidermal interleukin 1 alpha, interleukin 1 beta, and tumor necrosis factor alpha. Arch Dermatol 138(11):1473–1479PubMedCrossRefGoogle Scholar
  38. 38.
    Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494PubMedCrossRefGoogle Scholar
  39. 39.
    Naik E, Michalak EM, Villunger A, Adams JM, Strasser A (2007) Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa. J Cell Biol 176(4):415–424. doi:10.1083/jcb.200608070 PubMedCrossRefGoogle Scholar
  40. 40.
    Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211(1):90–98PubMedCrossRefGoogle Scholar
  41. 41.
    Oh U, Hwang SW, Kim D (1996) Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J Neurosci 16(5):1659–1667PubMedGoogle Scholar
  42. 42.
    Ouhtit A, Gorny A, Muller HK, Hill LL, Owen-Schaub L, Ananthaswamy HN (2000) Loss of Fas-ligand expression in mouse keratinocytes during UV carcinogenesis. Am J Pathol 157(6):1975–1981PubMedCrossRefGoogle Scholar
  43. 43.
    Pentland AP, Shapiro SD, Welgus HG (1995) Agonist-induced expression of tissue inhibitor of metalloproteinases and metalloproteinases by human macrophages is regulated by endogenous prostaglandin E2 synthesis. J Invest Dermatol 104(1):52–57PubMedCrossRefGoogle Scholar
  44. 44.
    Rittie L, Fisher GJ (2002) UV-light-induced signal cascades and skin aging. Ageing Res Rev 1(4):705–720PubMedCrossRefGoogle Scholar
  45. 45.
    Sasamura T, Sasaki M, Tohda C, Kuraishi Y (1998) Existence of capsaicin-sensitive glutamatergic terminals in rat hypothalamus. Neuroreport 9(9):2045–2048PubMedCrossRefGoogle Scholar
  46. 46.
    Scharffetter-Kochanek K, Brenneisen P, Wenk J, Herrmann G, Ma W, Kuhr L, Meewes C, Wlaschek M (2000) Photoaging of the skin from phenotype to mechanisms. Exp Gerontol 35(3):307–316PubMedCrossRefGoogle Scholar
  47. 47.
    Schorpp M, Mattei MG, Herr I, Gack S, Schaper J, Angel P (1995) Structural organization and chromosomal localization of the mouse collagenase type I gene. Biochem J 308(Pt 1):211–217PubMedGoogle Scholar
  48. 48.
    Seabrook GR, Sutton KG, Jarolimek W, Hollingworth GJ, Teague S, Webb J, Clark N, Boyce S, Kerby J, Ali Z, Chou M, Middleton R, Kaczorowski G, Jones AB (2002) Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenylacetate ester) iodo-resiniferatoxin. J Pharmacol Exp Ther 303(3):1052–1060PubMedCrossRefGoogle Scholar
  49. 49.
    Seo JY, Kim EK, Lee SH, Park KC, Kim KH, Eun HC, Chung JH (2003) Enhanced expression of cylooxygenase-2 by UV in aged human skin in vivo. Mech Ageing Dev 124(8–9):903–910PubMedCrossRefGoogle Scholar
  50. 50.
    Shimizu I, Iida T, Horiuchi N, Caterina MJ (2005) 5-Iodoresiniferatoxin evokes hypothermia in mice and is a partial transient receptor potential vanilloid 1 agonist in vitro. J Pharmacol Exp Ther 314(3):1378–1385. doi:10.1124/jpet.105.084277 PubMedCrossRefGoogle Scholar
  51. 51.
    Smith WL, Meade EA, DeWitt DL (1994) Pharmacology of prostaglandin endoperoxide synthase isozymes-1 and -2. Ann N Y Acad Sci 714:136–142PubMedCrossRefGoogle Scholar
  52. 52.
    Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD, Travers JB (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304(1):217–222PubMedCrossRefGoogle Scholar
  53. 53.
    Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedCrossRefGoogle Scholar
  54. 54.
    Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543PubMedCrossRefGoogle Scholar
  55. 55.
    Veronesi B, Oortgiesen M, Carter JD, Devlin RB (1999) Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line. Toxicol Appl Pharmacol 154(1):106–115PubMedCrossRefGoogle Scholar
  56. 56.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. doi:10.1038/35042675 PubMedCrossRefGoogle Scholar
  57. 57.
    Wlaschek M, Bolsen K, Herrmann G, Schwarz A, Wilmroth F, Heinrich PC, Goerz G, Scharffetter-Kochanek K (1993) UVA-induced autocrine stimulation of fibroblast-derived-collagenase by IL-6: a possible mechanism in dermal photodamage? J Invest Dermatol 101(2):164–168PubMedCrossRefGoogle Scholar
  58. 58.
    Woessner JF Jr (1998) Role of matrix proteases in processing enamel proteins. Connect Tissue Res 39(1–3):69–73 (discussion 141–149)PubMedCrossRefGoogle Scholar
  59. 59.
    Wood JN, Winter J, James IF, Rang HP, Yeats J, Bevan S (1988) Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci 8(9):3208–3220PubMedGoogle Scholar
  60. 60.
    Zahner G, Wolf G, Ayoub M, Reinking R, Panzer U, Shankland SJ, Stahl RA (2002) Cyclooxygenase-2 overexpression inhibits platelet-derived growth factor-induced mesangial cell proliferation through induction of the tumor suppressor gene p53 and the cyclin-dependent kinase inhibitors p21waf-1/cip-1 and p27kip-1. J Biol Chem 277(12):9763–9771PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Young Mee Lee
    • 1
    • 2
    • 3
  • So Min Kang
    • 1
    • 2
    • 3
  • Se Rah Lee
    • 1
    • 2
    • 3
  • Kyung Hwan Kong
    • 1
    • 2
    • 3
  • Jeong Yoon Lee
    • 1
    • 2
    • 3
  • Eun Ju Kim
    • 1
    • 2
    • 3
  • Jin Ho Chung
    • 1
    • 2
    • 3
  1. 1.Department of DermatologySeoul National University HospitalSeoulKorea
  2. 2.Laboratory of Cutaneous Aging Research, Clinical Research InstituteSeoul National University HospitalSeoulKorea
  3. 3.Institute of Dermatological ScienceSeoul National UniversitySeoulKorea

Personalised recommendations