Archives of Dermatological Research

, Volume 303, Issue 7, pp 457–473 | Cite as

Optical coherence tomography in dermatology: technical and clinical aspects

  • Thilo GambichlerEmail author
  • Volker Jaedicke
  • Sarah Terras
Review Article


Optical coherence tomography (OCT), a fairly new non-invasive optical real-time imaging modality, is an emergent in vivo technique, based on the interference (Michelson interferometry) of infrared radiation and living tissues, that allows high-resolution, 2- or 3-dimensional, cross-sectional visualisation of microstructural morphology of tissues. OCT provides depth-resolved images of tissues with resolution up to a few micrometers and depth up to several millimetres depending on tissue type. The investigations using OCT to assess skin structure in clinical settings started in the past decade and consequently proved that this imaging method is useful in visualizing subsurface structures of normal skin, including the epidermis, dermoepidermal junction, dermis, hair follicles, blood vessels and sweat ducts. An increasing number of papers brought evidence of the utility and the precision of OCT technology, in its different technical variants, in diagnosing and monitoring skin disorders, including malignancies and inflammatory conditions, respectively. The present comprehensive review describes and illustrates technical aspects and clinical applications of OCT methods in dermatology.


Optical coherence tomography Dermatology Skin imaging Interferometry Histology 


  1. 1.
    Aalders MC, Triesscheijn M, Ruevekamp M, de Bruin M, Baas P, Faber DJ, Stewart FA (2006) Doppler optical coherence tomography to monitor the effect of photodynamic therapy on tissue morphology and perfusion. J Biomed Opt 11(4):044011. doi: 10.1117/1.2337302 PubMedCrossRefGoogle Scholar
  2. 2.
    Abuzahra F, Spoler F, Forst M, Brans R, Erdmann S, Merk HF, Obrigkeit DH (2010) Pilot study: optical coherence tomography as a non-invasive diagnostic perspective for real time visualisation of onychomycosis. Mycoses 53(4):334–339. doi: 10.1111/j.1439-0507.2009.01717.x PubMedGoogle Scholar
  3. 3.
    Alex A, Povazay B, Hofer B, Popov S, Glittenberg C, Binder S, Drexler W (2010) Multispectral in vivo three-dimensional optical coherence tomography of human skin. J Biomed Opt 15(2):026025. doi: 10.1117/1.3400665 PubMedCrossRefGoogle Scholar
  4. 4.
    Altintas MA, Altintas AA, Guggenheim M, Niederbichler AD, Knobloch K, Vogt PM (2009) In vivo evaluation of histomorphological alterations in first-degree burn injuries by means of confocal-laser-scanning microscopy-more than “virtual histology?”. J Burn Care Res 30(2):315–320. doi: 10.1097/BCR.0b013e318198e746 PubMedCrossRefGoogle Scholar
  5. 5.
    Altintas MA, Altintas AA, Guggenheim M, Steiert AE, Aust MC, Niederbichler AD, Herold C, Vogt PM (2010) Insight in human skin microcirculation using in vivo reflectance-mode confocal laser scanning microscopy. J Digit Imaging 23(4):475–481. doi: 10.1007/s10278-009-9219-3 PubMedCrossRefGoogle Scholar
  6. 6.
    Barton JK, Gossage KW, Xu W, Ranger-Moore JR, Saboda K, Brooks CA, Duckett LD, Salasche SJ, Warneke JA, Alberts DS (2003) Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study. Technol Cancer Res Treat 2(6):525–535PubMedGoogle Scholar
  7. 7.
    Bechara FG, Gambichler T, Stucker M, Orlikov A, Rotterdam S, Altmeyer P, Hoffmann K (2004) Histomorphologic correlation with routine histology and optical coherence tomography. Skin Res Technol 10(3):169–173. doi: 10.1111/j.1600-0846.2004.00038.x PubMedCrossRefGoogle Scholar
  8. 8.
    Buder K, Knuschke P, Wozel G (2010) Evaluation of methylprednisolone aceponate, tacrolimus and combination thereof in the psoriasis plaque test using sum score, 20-MHz-ultrasonography and optical coherence tomography. Int J Clin Pharmacol Ther 48(12):814–820PubMedGoogle Scholar
  9. 9.
    Cahill RA, Mortensen NJ (2010) Intraoperative augmented reality for laparoscopic colorectal surgery by intraoperative near-infrared fluorescence imaging and optical coherence tomography. Minerva Chir 65(4):451–462PubMedGoogle Scholar
  10. 10.
    Chen Z, Milner TE, Srinivas S, Wang X, Malekafzali A, van Gemert MJ, Nelson JS (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett 22(14):1119–1121PubMedCrossRefGoogle Scholar
  11. 11.
    Choi B, Milner TE, Kim J, Goodman JN, Vargas G, Aguilar G, Nelson JS (2004) Use of optical coherence tomography to monitor biological tissue freezing during cryosurgery. J Biomed Opt 9(2):282–286. doi: 10.1117/1.1648647 PubMedCrossRefGoogle Scholar
  12. 12.
    Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11(18):2183–2189PubMedCrossRefGoogle Scholar
  13. 13.
    Chu CR, Izzo NJ, Irrgang JJ, Ferretti M, Studer RK (2007) Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography. J Biomed Opt 12(5):051703. doi: 10.1117/1.2789674 PubMedCrossRefGoogle Scholar
  14. 14.
    Cimalla P, Walther J, Mehner M, Cuevas M, Koch E (2009) Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging. Opt Express 17(22):19486–19500. doi: 10.1364/OE.17.019486 PubMedCrossRefGoogle Scholar
  15. 15.
    de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28(21):2067–2069PubMedCrossRefGoogle Scholar
  16. 16.
    de Giorgi V, Stante M, Massi D, Mavilia L, Cappugi P, Carli P (2005) Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Exp Dermatol 14(1):56–59. doi: 10.1111/j.0906-6705.2005.00229.x PubMedCrossRefGoogle Scholar
  17. 17.
    Drexler W (2004) Ultrahigh-resolution optical coherence tomography. J Biomed Opt 9(1):47–74. doi: 10.1117/1.1629679 PubMedCrossRefGoogle Scholar
  18. 18.
    Drexler W, Andersen PE (2009) Optical coherence tomography in biophotonics. J Biophotonics 2(6–7):339–341. doi: 10.1002/jbio.200910542 PubMedCrossRefGoogle Scholar
  19. 19.
    Faber DJ, Mik EG, Aalders MC, van Leeuwen TG (2005) Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt Lett 30(9):1015–1017PubMedCrossRefGoogle Scholar
  20. 20.
    Fan C, Wang Y, Wang RK (2007) Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection. Opt Express 15(13):7950–7961PubMedCrossRefGoogle Scholar
  21. 21.
    Fercher AF (1993) Ophthalmic interferometry. In: von Bally G, Khanna S (eds) Optics in medicine, biology and environmental research. Selected contributions to the First International Conference on Optics Within Life Sciences (OLWS I), Garmisch-Partenkirchen, Germany, 12–16 August 1990 (ICO-15 SAT). Elsevier, Amsterdam, pp 221–228Google Scholar
  22. 22.
    Fercher AF (2008) Inverse scattering, dispersion and speckle in optical coherence tomography. In: Drexler W, Fujimoto JG (eds) Optical coherence tomography, pp 119–146Google Scholar
  23. 23.
    Fercher AF, Roth E (1986) Ophthalmic laser interferometry. In: Proceedings of the SPIE—The International Society for Optical Engineering, vol 658, pp 48–51Google Scholar
  24. 24.
    Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H (1993) In vivo optical coherence tomography. Am J Ophthalmol 116(1):113–114PubMedGoogle Scholar
  25. 25.
    Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13(3):186–188PubMedCrossRefGoogle Scholar
  26. 26.
    Forsea AM, Carstea EM, Ghervase L, Giurcaneanu C, Pavelescu G (2010) Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study. J Med Life 3(4):381–389PubMedGoogle Scholar
  27. 27.
    Fruhstorfer H, Abel U, Garthe CD, Knuttel A (2000) Thickness of the stratum corneum of the volar fingertips. Clin Anat 13(6):429–433. doi: 10.1002/1098-2353(2000)13:6<429 PubMedCrossRefGoogle Scholar
  28. 28.
    Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21(11):1361–1367. doi: 10.1038/nbt892 PubMedCrossRefGoogle Scholar
  29. 29.
    Gambichler T, Boms S, Stucker M, Kreuter A, Moussa G, Sand M, Altmeyer P, Hoffmann K (2006) Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison. J Eur Acad Dermatol Venereol 20(7):791–795. doi: 10.1111/j.1468-3083.2006.01629.x PubMedGoogle Scholar
  30. 30.
    Gambichler T, Boms S, Stucker M, Kreuter A, Sand M, Moussa G, Altmeyer P, Hoffmann K (2005) Comparison of histometric data obtained by optical coherence tomography and routine histology. J Biomed Opt 10(4):44008. doi: 10.1117/1.2039086 PubMedCrossRefGoogle Scholar
  31. 31.
    Gambichler T, Boms S, Stucker M, Moussa G, Kreuter A, Sand M, Sand D, Altmeyer P, Hoffmann K (2005) Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology. Arch Dermatol Res 297(5):218–225. doi: 10.1007/s00403-005-0604-6 PubMedCrossRefGoogle Scholar
  32. 32.
    Gambichler T, Huyn J, Tomi NS, Moussa G, Moll C, Sommer A, Altmeyer P, Hoffmann K (2006) A comparative pilot study on ultraviolet-induced skin changes assessed by noninvasive imaging techniques in vivo. Photochem Photobiol 82(4):1103–1107. doi: 10.1562/2005-12-21-RA-757 PubMedCrossRefGoogle Scholar
  33. 33.
    Gambichler T, Hyun J, Moussa G, Tomi NS, Boms S, Altmeyer P, Hoffmann K, Kreuter A (2007) Optical coherence tomography of cutaneous lupus erythematosus correlates with histopathology. Lupus 16(1):35–38PubMedCrossRefGoogle Scholar
  34. 34.
    Gambichler T, Kunzlberger B, Paech V, Kreuter A, Boms S, Bader A, Moussa G, Sand M, Altmeyer P, Hoffmann K (2005) UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study. Clin Exp Dermatol 30(1):79–82. doi: 10.1111/j.1365-2230.2004.01690.x PubMedCrossRefGoogle Scholar
  35. 35.
    Gambichler T, Matip R, Moussa G, Altmeyer P, Hoffmann K (2006) In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site. J Dermatol Sci 44(3):145–152. doi: 10.1016/j.jdermsci.2006.09.008 PubMedCrossRefGoogle Scholar
  36. 36.
    Gambichler T, Moussa G, Bahrenberg K, Vogt M, Ermert H, Weyhe D, Altmeyer P, Hoffmann K (2007) Preoperative ultrasonic assessment of thin melanocytic skin lesions using a 100-MHz ultrasound transducer: a comparative study. Dermatol Surg 33(7):818–824. doi: 10.1111/j.1524-4725.2007.33175.x PubMedCrossRefGoogle Scholar
  37. 37.
    Gambichler T, Moussa G, Regeniter P, Kasseck C, Hofmann MR, Bechara FG, Sand M, Altmeyer P, Hoffmann K (2007) Validation of optical coherence tomography in vivo using cryostat histology. Phys Med Biol 52(5):N75–N85. doi: 10.1088/0031-9155/52/5/N01 PubMedCrossRefGoogle Scholar
  38. 38.
    Gambichler T, Moussa G, Sand M, Sand D, Orlikov A, Altmeyer P, Hoffmann K (2005) Correlation between clinical scoring of allergic patch test reactions and optical coherence tomography. J Biomed Opt 10(6):064030. doi: 10.1117/1.2141933 PubMedCrossRefGoogle Scholar
  39. 39.
    Gambichler T, Orlikov A, Vasa R, Moussa G, Hoffmann K, Stucker M, Altmeyer P, Bechara FG (2007) In vivo optical coherence tomography of basal cell carcinoma. J Dermatol Sci 45(3):167–173. doi: 10.1016/j.jdermsci.2006.11.012 PubMedCrossRefGoogle Scholar
  40. 40.
    Gambichler T, Regeniter P, Bechara FG, Orlikov A, Vasa R, Moussa G, Stucker M, Altmeyer P, Hoffmann K (2007) Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J Am Acad Dermatol 57(4):629–637. doi: 10.1016/j.jaad.2007.05.029 PubMedCrossRefGoogle Scholar
  41. 41.
    Gladkova ND, Petrova GA, Nikulin NK, Radenska-Lopovok SG, Snopova LB, Chumakov YP, Nasonova VA, Gelikonov VM, Gelikonov GV, Kuranov RV, Sergeev AM, Feldchtein FI (2000) In vivo optical coherence tomography imaging of human skin: norm and pathology. Skin Res Technol 6(1):6–16PubMedCrossRefGoogle Scholar
  42. 42.
    Glogau RG (2000) The risk of progression to invasive disease. J Am Acad Dermatol 42(1):23–24PubMedCrossRefGoogle Scholar
  43. 43.
    Gotzinger E, Pircher M, Geitzenauer W, Ahlers C, Baumann B, Michels S, Schmidt-Erfurth U, Hitzenberger CK (2008) Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Opt Express 16(21):16410–16422PubMedCrossRefGoogle Scholar
  44. 44.
    Graf RN, Robles F, Chen X, Wax A (2010) Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations. J Biomed Opt 14(6):064030. doi: 10.1117/1.3269680 Google Scholar
  45. 45.
    Hamdoon Z, Jerjes W, Upile T, Hopper C (2011) Optical coherence tomography-guided photodynamic therapy for skin cancer: case study. Photodiagnosis Photodyn Ther 8(1):49–52. doi: 10.1016/j.pdpdt.2010.08.004 PubMedCrossRefGoogle Scholar
  46. 46.
    Hendriks FM, Brokken D, Oomens CW, Baaijens FP (2004) Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography. Skin Res Technol 10(4):231–241. doi: 10.1111/j.1600-0846.2004.00077.x PubMedCrossRefGoogle Scholar
  47. 47.
    Holmes J, Hattersley S (2009) Image blending and speckle noise reduction in multi-beam OCT. Proc SPIE 7168(1):71681N. doi: 10.1117/12.808575 CrossRefGoogle Scholar
  48. 48.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG et al (1991) Optical coherence tomography. Science 254(5035):1178–1181PubMedCrossRefGoogle Scholar
  49. 49.
    Izatt JA, Kulkarni MD, Yazdanfar S, Barton JK, Welch AJ (1997) In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett 22(18):1439–1441PubMedCrossRefGoogle Scholar
  50. 50.
    Jorgensen TM, Tycho A, Mogensen M, Bjerring P, Jemec GB (2008) Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res Technol 14(3):364–369. doi: 10.1111/j.1600-0846.2008.00304.x PubMedCrossRefGoogle Scholar
  51. 51.
    Josse G, George J, Black D (2011) Automatic measurement of epidermal thickness from optical coherence tomography images using a new algorithm. Skin Res Technol. doi: 10.1111/j.1600-0846.2011.00499.x
  52. 52.
    Kartakoullis A, Bousi E, Pitris C (2010) Scatterer size-based analysis of optical coherence tomography images using spectral estimation techniques. Opt Express 18(9):9181–9191. doi: 10.1364/OE.18.009181 PubMedCrossRefGoogle Scholar
  53. 53.
    Kasseck C, Jaedicke V, Gerhardt NC, Welp H, Hofmann MR (2010) Substance identification by depth resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography. Opt Commun 283(23):4816–4822Google Scholar
  54. 54.
    Kennedy BF, Hillman TR, McLaughlin RA, Quirk BC, Sampson DD (2009) In vivo dynamic optical coherence elastography using a ring actuator. Opt Express 17(24):21762–21772. doi: 10.1364/OE.17.021762 PubMedCrossRefGoogle Scholar
  55. 55.
    Khandwala M, Penmetsa BR, Dey S, Schofield JB, Jones CA (2010) Podoleanu a imaging of periocular basal cell carcinoma using en face optical coherence tomography: a pilot study. Br J Ophthalmol 94(10):1332–1336. doi: 10.1136/bjo.2009.170811 PubMedCrossRefGoogle Scholar
  56. 56.
    Knuttel A, Boehlau-Godau M (2000) Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. J Biomed Opt 5(1):83–92. doi: 10.1117/1.429972 PubMedCrossRefGoogle Scholar
  57. 57.
    Knuttel A, Bonev S, Knaak W (2004) New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography. J Biomed Opt 9(2):265–273. doi: 10.1117/1.1647544 PubMedCrossRefGoogle Scholar
  58. 58.
    Kodach VM, Faber DJ, van Marle J, van Leeuwen TG, Kalkman J (2011) Determination of the scattering anisotropy with optical coherence tomography. Opt Express 19(7):6131–6140PubMedCrossRefGoogle Scholar
  59. 59.
    Konig K, Speicher M, Buckle R, Reckfort J, McKenzie G, Welzel J, Koehler MJ, Elsner P, Kaatz M (2009) Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. J Biophotonics 2(6–7):389–397. doi: 10.1002/jbio.200910013 PubMedCrossRefGoogle Scholar
  60. 60.
    Korde VR, Bonnema GT, Xu W, Krishnamurthy C, Ranger-Moore J, Saboda K, Slayton LD, Salasche SJ, Warneke JA, Alberts DS, Barton JK (2007) Using optical coherence tomography to evaluate skin sun damage and precancer. Lasers Surg Med 39(9):687–695. doi: 10.1002/lsm.20573 PubMedCrossRefGoogle Scholar
  61. 61.
    Lamirel C, Newman N, Biousse V (2009) The use of optical coherence tomography in neurology. Rev Neurol Dis 6(4):E105–E120PubMedGoogle Scholar
  62. 62.
    Lankenau E, Welzel J, Birngruber R, Engelhardt R (1997) In Vivo Tissue Measurements with Optical low Coherence Tomography. In: Tuchin V, Podbielska H, Ovrin B (eds) Coherence domain optical methods in biomedical science and clinical applications. Proc Soc Photo-Opt Instrum Eng, SPIE. 2981:78–84Google Scholar
  63. 63.
    Leitgeb R, Hitzenberger C, Fercher A (2003) Performance of fourier domain vs time domain optical coherence tomography. Opt Express 11(8):889–894PubMedCrossRefGoogle Scholar
  64. 64.
    Leitgeb R, Schmetterer L, Drexler W, Fercher A, Zawadzki R, Bajraszewski T (2003) Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt Express 11(23):3116–3121PubMedCrossRefGoogle Scholar
  65. 65.
    Leitgeb R, Wojtkowski M, Kowalczyk A, Hitzenberger CK, Sticker M, Fercher AF (2000) Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt Lett 25(11):820–822PubMedCrossRefGoogle Scholar
  66. 66.
    Liu Z, Guo Z, Zhuang Z, Zhai J, Xiong H, Zeng C (2010) Quantitative optical coherence tomography of skin lesions induced by different ultraviolet B sources. Phys Med Biol 55(20):6175–6185. doi: 10.1088/0031-9155/55/20/009 PubMedCrossRefGoogle Scholar
  67. 67.
    Mogensen M, Joergensen TM, Nurnberg BM, Morsy HA, Thomsen JB, Thrane L, Jemec GB (2009) Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 35(6):965–972. doi: 10.1111/j.1524-4725.2009.01164.x PubMedCrossRefGoogle Scholar
  68. 68.
    Mogensen M, Morsy HA, Nurnberg BM, Jemec GB (2008) Optical coherence tomography imaging of bullous diseases. J Eur Acad Dermatol Venereol 22(12):1458–1464. doi: 10.1111/j.1468-3083.2008.02917.x PubMedCrossRefGoogle Scholar
  69. 69.
    Mogensen M, Morsy HA, Thrane L, Jemec GB (2008) Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 217(1):14–20. doi: 10.1159/000118508 PubMedCrossRefGoogle Scholar
  70. 70.
    Mogensen M, Nurnberg BM, Forman JL, Thomsen JB, Thrane L, Jemec GB (2009) In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br J Dermatol 160(5):1026–1033. doi: 10.1111/j.1365-2133.2008.09003.x PubMedCrossRefGoogle Scholar
  71. 71.
    Mogensen M, Thrane L, Jorgensen TM, Andersen PE, Jemec GB (2009) OCT imaging of skin cancer and other dermatological diseases. J Biophotonics 2(6–7):442–451. doi: 10.1002/jbio.200910020 PubMedCrossRefGoogle Scholar
  72. 72.
    Morgner U, Drexler W, Kartner FX, Li XD, Pitris C, Ippen EP, Fujimoto JG (2000) Spectroscopic optical coherence tomography. Opt Lett 25(2):111–113PubMedCrossRefGoogle Scholar
  73. 73.
    Morsy H, Kamp S, Thrane L, Behrendt N, Saunder B, Zayan H, Elmagid EA, Jemec GB (2010) Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity. Arch Dermatol Res 302(2):105–111. doi: 10.1007/s00403-009-1000-4 PubMedCrossRefGoogle Scholar
  74. 74.
    Neerken S, Lucassen GW, Bisschop MA, Lenderink E, Nuijs TA (2004) Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt 9(2):274–281. doi: 10.1117/1.1645795 PubMedCrossRefGoogle Scholar
  75. 75.
    Nelson JS, Kelly KM, Zhao Y, Chen Z (2001) Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography. Arch Dermatol 137(6):741–744PubMedGoogle Scholar
  76. 76.
    Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL (2006) Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol 55(3):408–412. doi: 10.1016/j.jaad.2006.03.013 PubMedCrossRefGoogle Scholar
  77. 77.
    Pagnoni A, Knüttel A, Welker P, Rist M, Stoudemayer T, Kolbe L, Sadiq I, Kligman A (1999) Optical coherence tomography in dermatology. Skin Res Technol 5:83–87CrossRefGoogle Scholar
  78. 78.
    Patel JK, Konda S, Perez OA, Amini S, Elgart G, Berman B (2008) Newer technologies/techniques and tools in the diagnosis of melanoma. Eur J Dermatol 18(6):617–631. doi: 10.1684/ejd.2008.0508 PubMedGoogle Scholar
  79. 79.
    Pierce MC, Strasswimmer J, Hyle Park B, Cense B, De Boer JF (2004) Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Opt 9(2):287–291. doi: 10.1117/1.1645797 PubMedCrossRefGoogle Scholar
  80. 80.
    Pircher M, Gotzinger E, Leitgeb R, Fercher A, Hitzenberger C (2003) Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography. Opt Express 11(18):2190–2197PubMedCrossRefGoogle Scholar
  81. 81.
    Robles F, Graf RN, Wax A (2009) Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution. Opt Express 17(8):6799–6812PubMedCrossRefGoogle Scholar
  82. 82.
    Robles FE, Chowdhury S, Wax A (2010) Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics. Opt Express 1(1):310–317Google Scholar
  83. 83.
    Sacchet D, Moreau J, Georges P, Dubois A (2008) Simultaneous dual-band ultra-high resolution full-field optical coherence tomography. Opt Express 16(24):19434–19446PubMedCrossRefGoogle Scholar
  84. 84.
    Sainter AW, King TA, Dickinson MR (2004) Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography. J Biomed Opt 9(1):193–199. doi: 10.1117/1.1628243 PubMedCrossRefGoogle Scholar
  85. 85.
    Sakai S, Nakagawa N, Yamanari M, Miyazawa A, Yasuno Y, Matsumoto M (2009) Relationship between dermal birefringence and the skin surface roughness of photoaged human skin. J Biomed Opt 14(4):044032. doi: 10.1117/1.3207142 PubMedCrossRefGoogle Scholar
  86. 86.
    Salvini C, Massi D, Cappetti A, Stante M, Cappugi P, Fabbri P, Carli P (2008) Application of optical coherence tomography in non-invasive characterization of skin vascular lesions. Skin Res Technol 14(1):89–92. doi: 10.1111/j.1600-0846.2007.00265.x PubMedGoogle Scholar
  87. 87.
    Sand M, Gambichler T, Moussa G, Bechara FG, Sand D, Altmeyer P, Hoffmann K (2006) Evaluation of the epidermal refractive index measured by optical coherence tomography. Skin Res Technol 12(2):114–118. doi: 10.1111/j.0909-752X.2006.00144.x PubMedCrossRefGoogle Scholar
  88. 88.
    Sauermann K, Gambichler T, Wilmert M, Rotterdam S, Stucker M, Altmeyer P, Hoffmann K (2002) Investigation of basal cell carcinoma [correction of carcionoma] by confocal laser scanning microscopy in vivo. Skin Res Technol 8(3):141–147PubMedCrossRefGoogle Scholar
  89. 89.
    Saxer CE, de Boer JF, Park BH, Zhao Y, Chen Z, Nelson JS (2000) High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin. Opt Lett 25(18):1355–1357PubMedCrossRefGoogle Scholar
  90. 90.
    Schmitt J (1998) OCT elastography: imaging microscopic deformation and strain of tissue. Opt Express 3(6):199–211PubMedCrossRefGoogle Scholar
  91. 91.
    Schmitt JM (1999) Optical coherence tomography. IEEE J Sel Top Quantum Electr 5:1205–1215CrossRefGoogle Scholar
  92. 92.
    Schmitt JM (1999) Optical coherence tomography (OCT): a review. IEEE J Sel Top Quantum Electr 5(4):1205–1215CrossRefGoogle Scholar
  93. 93.
    Smith LE, Bonesi M, Smallwood R, Matcher SJ, Macneil S (2010) Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin. J Tissue Eng Regen Med. doi: 10.1002/term.281
  94. 94.
    Spoler F, Forst M, Marquardt Y, Hoeller D, Kurz H, Merk H, Abuzahra F (2006) High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents. Skin Res Technol 12(4):261–267. doi: 10.1111/j.0909-752X.2006.00163.x PubMedCrossRefGoogle Scholar
  95. 95.
    Spoler F, Kray S, Grychtol P, Hermes B, Bornemann J, Forst M, Kurz H (2007) Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt Express 15(17):10832–10841PubMedCrossRefGoogle Scholar
  96. 96.
    Srinivas SM, de Boer JF, Park H, Keikhanzadeh K, Huang HE, Zhang J, Jung WQ, Chen Z, Nelson JS (2004) Determination of burn depth by polarization-sensitive optical coherence tomography. J Biomed Opt 9(1):207–212. doi: 10.1117/1.1629680 PubMedCrossRefGoogle Scholar
  97. 97.
    Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF (2004) Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt 9(2):292–298. doi: 10.1117/1.1644118 PubMedCrossRefGoogle Scholar
  98. 98.
    Tang S, Krasieva TB, Chen Z, Tempea G, Tromberg BJ (2006) Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy. J Biomed Opt 11(2):020501. doi: 10.1117/1.2177676 PubMedCrossRefGoogle Scholar
  99. 99.
    Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321):2037–2039PubMedCrossRefGoogle Scholar
  100. 100.
    Thomas MW, Grichnik JM, Izatt JA (2007) Three-dimensional images and vessel rendering using optical coherence tomography. Arch Dermatol 143(11):1468–1469. doi: 10.1001/archderm.143.11.1468 PubMedCrossRefGoogle Scholar
  101. 101.
    Unterhuber A, Povazay B, Bizheva K, Hermann B, Sattmann H, Stingl A, Le T, Seefeld M, Menzel R, Preusser M, Budka H, Schubert C, Reitsamer H, Ahnelt PK, Morgan JE, Cowey A, Drexler W (2004) Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Phys Med Biol 49(7):1235–1246PubMedCrossRefGoogle Scholar
  102. 102.
    Vakoc B, Yun S, de Boer J, Tearney G, Bouma B (2005) Phase-resolved optical frequency domain imaging. Opt Express 13(14):5483–5493PubMedCrossRefGoogle Scholar
  103. 103.
    Vargas G, Chan EK, Barton JK, Rylander HG 3rd, Welch AJ (1999) Use of an agent to reduce scattering in skin. Lasers Surg Med 24(2):133–141. doi: 10.1002/(SICI)1096-9101 PubMedCrossRefGoogle Scholar
  104. 104.
    Vargas G, Readinger A, Dozier SS, Welch AJ (2003) Morphological changes in blood vessels produced by hyperosmotic agents and measured by optical coherence tomography. Photochem Photobiol 77(5):541–549PubMedCrossRefGoogle Scholar
  105. 105.
    Vo-Dinh T (ed) (2003) Biomedical Photonics Handbook, 1 edn. SPIE, CRC Press, Boca RatonGoogle Scholar
  106. 106.
    Wang L, Wang Y, Guo S, Zhang J, Bachman M (2004) Frequency domain phase-resolved optical Doppler and Doppler variance tomography optics communications 242(4–6):345–350Google Scholar
  107. 107.
    Wang Y, Zhao Y, Nelson JS, Chen Z, Windeler RS (2003) Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Opt Lett 28(3):182–184PubMedCrossRefGoogle Scholar
  108. 108.
    Weissman J, Hancewicz T, Kaplan P (2004) Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis. Opt Express 12(23):5760–5769PubMedCrossRefGoogle Scholar
  109. 109.
    Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7(1):1–9PubMedCrossRefGoogle Scholar
  110. 110.
    Welzel J, Bruhns M, Wolff HH (2003) Optical coherence tomography in contact dermatitis and psoriasis. Arch Dermatol Res 295(2):50–55. doi: 10.1007/s00403-003-0390-y PubMedCrossRefGoogle Scholar
  111. 111.
    Welzel J, Lankenau E, Birngruber R, Engelhardt R (1997) Optical coherence tomography of the human skin. J Am Acad Dermatol 37(6):958–963, S0190-9622(97)70072-0 [pii]PubMedCrossRefGoogle Scholar
  112. 112.
    Welzel J, Lankenau E, Birngruber R, Engelhardt R (1998) Optical coherence tomography of the skin. Curr Probl Dermatol 26:27–37PubMedCrossRefGoogle Scholar
  113. 113.
    Welzel J, Lankenau E, Hüttmann G, Birngruber R (eds) (2008) OCT in dermatology. Handbook of optical coherence tomography. Springer, BerlinGoogle Scholar
  114. 114.
    Welzel J, Noack J, Lankenau E, Engelhardt R (2002) Optical coherence tomography in dermatology. Handbook of optical coherence tomography. Marcel Dekker, Inc., New YorkGoogle Scholar
  115. 115.
    Welzel J, Reinhardt C, Lankenau E, Winter C, Wolff HH (2004) Changes in function and morphology of normal human skin: evaluation using optical coherence tomography. Br J Dermatol 150(2):220–225PubMedCrossRefGoogle Scholar
  116. 116.
    Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 18(14):14685–14704. doi: 10.1364/OE.18.014685 PubMedCrossRefGoogle Scholar
  117. 117.
    Wilder-Smith P, Krasieva T, Jung WG, Zhang J, Chen Z, Osann K, Tromberg B (2005) Noninvasive imaging of oral premalignancy and malignancy. J Biomed Opt 10(5):051601. doi: 10.1117/1.2098930 PubMedCrossRefGoogle Scholar
  118. 118.
    Xu C, Kamalabadi F, Boppart SA (2005) Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography. Appl Opt 44(10):1813–1822PubMedCrossRefGoogle Scholar
  119. 119.
    Yang VXD, Pekar J, Lo SSW, Gordon ML, Wilson BC, Vitkina IA (2003) Optical coherence and Doppler tomography for monitoring tissue changes induced by laser thermal therapy—An in vivo feasibility study. Rev Sci Instrum 74(1):437–440CrossRefGoogle Scholar
  120. 120.
    Yeh AT, Kao B, Jung WG, Chen Z, Nelson JS, Tromberg BJ (2004) Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model. J Biomed Opt 9(2):248–253. doi: 10.1117/1.1648646 PubMedCrossRefGoogle Scholar
  121. 121.
    Zhang J, Chen Z (2005) In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography. Opt Express 13(19):7449–7457PubMedCrossRefGoogle Scholar
  122. 122.
    Zhao S, Gu Y, Xue P, Guo J, Shen T, Wang T, Huang N, Zhang L, Qiu H, Yu X, Wei X (2010) Imaging port wine stains by fiber optical coherence tomography. J Biomed Opt 15(3):036020. doi: 10.1117/1.3445712 PubMedCrossRefGoogle Scholar
  123. 123.
    Zhao Y, Chen Z, Saxer C, Xiang S, de Boer JF, Nelson JS (2000) Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett 25(2):114–116PubMedCrossRefGoogle Scholar
  124. 124.
    Treu CM, Lupi O, Bottino DA, Bouskela E (2011) Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology. Arch Dermatol Res 303:69–78PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thilo Gambichler
    • 1
    Email author
  • Volker Jaedicke
    • 2
  • Sarah Terras
    • 1
  1. 1.Department of DermatologyRuhr-University BochumBochumGermany
  2. 2.Photonics and Terahertz TechnologyRuhr-University BochumBochumGermany

Personalised recommendations