Archives of Dermatological Research

, Volume 303, Issue 2, pp 103–115

Major translocation of calcium upon epidermal barrier insult: imaging and quantification via FLIM/Fourier vector analysis

  • Martin J. Behne
  • Susana Sanchez
  • Nicholas P. Barry
  • Nina Kirschner
  • Wilfried Meyer
  • Theodora M. Mauro
  • Ingrid Moll
  • Enrico Gratton
Original Paper

Abstract

Calcium controls an array of key events in keratinocytes and epidermis: localized changes in Ca2+ concentrations and their regulation are therefore especially important to assess when observing epidermal barrier homeostasis and repair, neonatal barrier establishment, in differentiation, signaling, cell adhesion, and in various pathological states. Yet, tissue- and cellular Ca2+ concentrations in physiologic and diseased states are only partially known, and difficult to measure. Prior observations on the Ca2+ distribution in skin were based on Ca2+ precipitation followed by electron microscopy, or proton-induced X-ray emission. Neither cellular and/or subcellular localization could be determined through these approaches. In cells in vitro, fluorescent dyes have been used extensively for ratiometric measurements of static and dynamic Ca2+ concentrations, also assessing organelle Ca2+ concentrations. For lack of better methods, these findings together build the basis for the current view of the role of Ca2+ in epidermis, their limitations notwithstanding. Here we report a method using Calcium Green 5N as the calcium sensor and the phasor-plot approach to separate raw lifetime components. Thus, fluorescence lifetime imaging (FLIM) enables us to quantitatively assess and visualize dynamic changes of Ca2+ at light-microscopic resolution in ex vivo biopsies of unfixed epidermis, in close to in vivo conditions. Comparing undisturbed epidermis with epidermis following a barrier insult revealed major shifts, and more importantly, a mobilization of high amounts of Ca2+ shortly following barrier disruption, from intracellular stores. These results partially contradict the conventional view, where barrier insults abrogate a Ca2+ gradient towards the stratum granulosum. Ca2+ FLIM overcomes prior limitations in the observation of epidermal Ca2+ dynamics, and will allow further insights into basic epidermal physiology.

Keywords

Calcium Lifetime imaging Epidermis Calcium Green 5N DMSO Phasor analysis 

References

  1. 1.
    Agronskaia AV, Tertoolen L, Gerritsen HC (2004) Fast fluorescence lifetime imaging of calcium in living cells. J Biomed Opt 9:1230–1237CrossRefPubMedGoogle Scholar
  2. 2.
    Aronchik I, Behne MJ, Leypoldt L, Crumrine D, Epstein E, Ikeda S, Mizoguchi M, Bench G, Pozzan T, Mauro T (2003) Actin reorganization is abnormal and cellular ATP is decreased in Hailey–Hailey keratinocytes. J Invest Dermatol 121:681–687CrossRefPubMedGoogle Scholar
  3. 3.
    Behne MJ, Barry NP, Hanson KM, Aronchik I, Clegg RW, Gratton E, Feingold K, Holleran WM, Elias PM, Mauro TM (2003) Neonatal development of the stratum corneum pH gradient: localization and mechanisms leading to emergence of optimal barrier function. J Invest Dermatol 120:998–1006CrossRefPubMedGoogle Scholar
  4. 4.
    Behne MJ, Tu CL, Aronchik I, Epstein E, Bench G, Bikle DD, Pozzan T, Mauro TM (2003) Human keratinocyte ATP2C1 localizes to the Golgi and controls Golgi Ca2+ stores. J Invest Dermatol 121:688–694CrossRefPubMedGoogle Scholar
  5. 5.
    Behne MJ, Meyer JW, Hanson KM, Barry NP, Murata S, Crumrine D, Clegg RW, Gratton E, Holleran WM, Elias PM, Mauro TM (2002) NHE1 regulates the stratum corneum permeability barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging. J Biol Chem 277:47399–47406CrossRefPubMedGoogle Scholar
  6. 6.
    Behne MJ, Barry NP, Moll I, Gratton E, Mauro TM (2004) Fluorescence lifetime to image epidermal ionic concentrations. In: Avrillier S, Tualle JM (eds) Femtosecond laser Applications in Biology. Proceedings of SPIE, Bellingham, WA, pp 37–44Google Scholar
  7. 7.
    Bikle DD, Ratnam A, Mauro T, Harris J, Pillai S (1996) Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor. J Clin Invest 97:1085–1093CrossRefPubMedGoogle Scholar
  8. 8.
    Brini M, Carafoli E (2000) Calcium signalling: a historical account, recent developments and future perspectives. Cell Mol Life Sci 57:354–370CrossRefPubMedGoogle Scholar
  9. 9.
    Bunse T, Steigleder GK, Hofert M, Gonsior B (1991) PIXE analysis in uninvolved skin of atopic patients and aged skin. Acta Derm Venereol 71:287–290PubMedGoogle Scholar
  10. 10.
    Celli A, Mackenzie DS, Crumrine DS, Tu CL, Hupe M, Bikle DD, Elias PM, Mauro TM (2010) Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis. Br J DermatolGoogle Scholar
  11. 11.
    Celli A, Sanchez S, Behne M, Hazlett T, Gratton E, Mauro T (2010) The epidermal Ca(2+) gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys J 98:911–921CrossRefPubMedGoogle Scholar
  12. 12.
    Christophers E (1971) Cellular architecture of the stratum corneum. J Invest Dermatol 56:165–169CrossRefPubMedGoogle Scholar
  13. 13.
    Combettes L, Cheek TR, Taylor CW (1996) Regulation of inositol trisphosphate receptors by luminal Ca2+ contributes to quantal Ca2+ mobilization. EMBO J 15:2086–2093PubMedGoogle Scholar
  14. 14.
    Davies EV, Hallett MB (1998) High micromolar Ca2+ beneath the plasma membrane in stimulated neutrophils. Biochem Biophys Res Commun 248:679–683CrossRefPubMedGoogle Scholar
  15. 15.
    Denda M, Tsuchiya T, Elias PM, Feingold KR (2000) Stress alters cutaneous permeability barrier homeostasis. Am J Physiol Regul Integr Comp Physiol 278:R367–R372PubMedGoogle Scholar
  16. 16.
    Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16CrossRefPubMedGoogle Scholar
  17. 17.
    Dupont G, Combettes L, Leybaert L (2007) Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 261:193–245CrossRefPubMedGoogle Scholar
  18. 18.
    Ehlers C, Ivens UI, Moller ML, Senderovitz T, Serup J (2001) Comparison of two pH meters used for skin surface pH measurement: the pH meter ‘pH900’ from Courage & Khazaka versus the pH meter ‘1140’ from Mettler Toledo. Skin Res Technol 7:84–89CrossRefPubMedGoogle Scholar
  19. 19.
    Eilers J, Callewaert G, Armstrong C, Konnerth A (1995) Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc Natl Acad Sci USA 92:10272–10276CrossRefPubMedGoogle Scholar
  20. 20.
    Elias P, Ahn S, Brown B, Crumrine D, Feingold KR (2002) Origin of the epidermal calcium gradient: regulation by barrier status and role of active vs passive mechanisms. J Invest Dermatol 119:1269–1274CrossRefPubMedGoogle Scholar
  21. 21.
    Elias PM, Nau P, Hanley K, Cullander C, Crumrine D, Bench G, Sideras-Haddad E, Mauro T, Williams ML, Feingold KR (1998) Formation of the epidermal calcium gradient coincides with key milestones of barrier ontogenesis in the rodent. J Invest Dermatol 110:399–404CrossRefPubMedGoogle Scholar
  22. 22.
    Escobar AL, Monck JR, Fernandez JM, Vergara JL (1994) Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres. Nature 367:739–741CrossRefPubMedGoogle Scholar
  23. 23.
    Fan GY, Fujisaki H, Miyawaki A, Tsay RK, Tsien RY, Ellisman MH (1999) Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys J 76:2412–2420CrossRefPubMedGoogle Scholar
  24. 24.
    Forslind B, Werner-Linde Y, Lindberg M, Pallon J (1999) Elemental analysis mirrors epidermal differentiation. Acta Derm Venereol 79:12–17CrossRefPubMedGoogle Scholar
  25. 25.
    Grundin TG, Roomans GM, Forslind B, Lindberg M, Werner Y (1985) X-ray microanalysis of psoriatic skin. J Invest Dermatol 85:378–380CrossRefPubMedGoogle Scholar
  26. 26.
    Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM (2002) Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 83:1682–1690CrossRefPubMedGoogle Scholar
  27. 27.
    Harrison SM, Bers DM (1987) The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA. Biochim Biophys Acta 925:133–143PubMedGoogle Scholar
  28. 28.
    Hennings H, Holbrook KA, Yuspa SH (1983) Factors influencing calcium-induced terminal differentiation in cultured mouse epidermal cells. J Cell Physiol 116:265–281CrossRefPubMedGoogle Scholar
  29. 29.
    Hixon MS, Ball A, Gelb MH (1998) Calcium-dependent and -independent interfacial binding and catalysis of cytosolic group IV phospholipase A2. Biochemistry 37:8516–8526CrossRefPubMedGoogle Scholar
  30. 30.
    Huzaira M, Rius F, Rajadhyaksha M, Anderson RR, Gonzalez S (2001) Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J Invest Dermatol 116:846–852CrossRefPubMedGoogle Scholar
  31. 31.
    Hyvonen-Dabek M, Nikkinen-Vilkki P, Dabek JT (1984) Selenium and other elements in human maternal and umbilical serum, as determined simultaneously by proton-induced X-ray emission. Clin Chem 30:529–533PubMedGoogle Scholar
  32. 32.
    Jamora C, Fuchs E (2002) Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 4:E101–E108CrossRefPubMedGoogle Scholar
  33. 33.
    Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A–138AGoogle Scholar
  34. 34.
    Kligman AM (1965) Topical Pharmacology and Toxicology of Dimethyl Sulfoxide. 1. Jama 193:796–804PubMedGoogle Scholar
  35. 35.
    Koester HJ, Baur D, Uhl R, Hell SW (1999) Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophys J 77:2226–2236CrossRefPubMedGoogle Scholar
  36. 36.
    Kostov Y, Harms P, Rao G (2001) Ratiometric sensing using dual-frequency lifetime discrimination. Anal Biochem 297:105–108CrossRefPubMedGoogle Scholar
  37. 37.
    Kuba K, Nakayama S (1998) Two-photon laser-scanning microscopy: tests of objective lenses and Ca2+ probes. Neurosci Res 32:281–294CrossRefPubMedGoogle Scholar
  38. 38.
    Kubitscheck U, Pratsch L, Passow H, Peters R (1995) Calcium pump kinetics determined in single erythrocyte ghosts by microphotolysis and confocal imaging. Biophys J 69:30–41CrossRefPubMedGoogle Scholar
  39. 39.
    Kuhn MA (1993) 1,2-Bis(2-Aminophenoxy)Ethane-N,N,N′,N′,-Tetraacetic Acid Conjugates Used to Measure Intracellular Ca2+ Concentration. In: Czarnik AW (ed) Fluorescent chemosensors for ion and molecular recognition, American Chemical Society, pp 147–161Google Scholar
  40. 40.
    Kurebayashi N, Harkins AB, Baylor SM (1993) Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. Biophys J 64:1934–1960CrossRefPubMedGoogle Scholar
  41. 41.
    Lee SK, Lee JY, Lee MY, Chung SM, Chung JH (1999) Advantages of calcium green-1 over other fluorescent dyes in measuring cytosolic calcium in platelets. Anal Biochem 273:186–191CrossRefPubMedGoogle Scholar
  42. 42.
    Li L, Tucker RW, Hennings H, Yuspa SH (1995) Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro. J Cell Physiol 163:105–114CrossRefPubMedGoogle Scholar
  43. 43.
    Llano I, Tan YP, Caputo C (1997) Spatial heterogeneity of intracellular Ca2+ signals in axons of basket cells from rat cerebellar slices. J Physiol 502(Pt 3):509–519CrossRefPubMedGoogle Scholar
  44. 44.
    Lovelock JE, Bishop MW (1959) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183:1394–1395CrossRefPubMedGoogle Scholar
  45. 45.
    Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414CrossRefPubMedGoogle Scholar
  46. 46.
    Mao-Qiang M, Mauro T, Bench G, Warren R, Elias PM, Feingold KR (1997) Calcium and potassium inhibit barrier recovery after disruption, independent of the type of insult in hairless mice. Exp Dermatol 6:36–40CrossRefPubMedGoogle Scholar
  47. 47.
    Mauro T, Bench G, Sidderas-Haddad E, Feingold K, Elias P, Cullander C (1998) Acute barrier perturbation abolishes the Ca2+ and K+ gradients in murine epidermis: quantitative measurement using PIXE. J Invest Dermatol 111:1198–1201CrossRefPubMedGoogle Scholar
  48. 48.
    Menon GK, Elias PM, Lee SH, Feingold KR (1992) Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res 270:503–512CrossRefPubMedGoogle Scholar
  49. 49.
    Menon GK, Elias PM (1991) Ultrastructural localization of calcium in psoriatic and normal human epidermis. Arch Dermatol 127:57–63CrossRefPubMedGoogle Scholar
  50. 50.
    Menon GK, Grayson S, Elias PM (1985) Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol 84:508–512CrossRefPubMedGoogle Scholar
  51. 51.
    Michelangeli F, Ogunbayo OA, Wootton LL (2005) A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol 17:135–140CrossRefPubMedGoogle Scholar
  52. 52.
    Millonig G (1961) A modified procedure for lead staining of thin sections. J Biophys Biochem Cytol 11:736–739CrossRefPubMedGoogle Scholar
  53. 53.
    Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H (2000) Abnormal intracellular ca(2+) homeostasis and disease. Cell Calcium 28:1–21CrossRefPubMedGoogle Scholar
  54. 54.
    Naraghi M (1997) T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium 22:255–268CrossRefPubMedGoogle Scholar
  55. 55.
    Oheim M, Naraghi M, Muller TH, Neher E (1998) Two dye two wavelength excitation calcium imaging: results from bovine adrenal chromaffin cells. Cell Calcium 24:71–84CrossRefPubMedGoogle Scholar
  56. 56.
    Parekh AB (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 547:333–348CrossRefPubMedGoogle Scholar
  57. 57.
    Peretz A, Suss-Toby E, Rom-Glas A, Arnon A, Payne R, Minke B (1994) The light response of Drosophila photoreceptors is accompanied by an increase in cellular calcium: effects of specific mutations. Neuron 12:1257–1267CrossRefPubMedGoogle Scholar
  58. 58.
    Poenie M (1990) Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium 11:85–91CrossRefPubMedGoogle Scholar
  59. 59.
    Rajdev S, Reynolds IJ (1993) Calcium green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons. Neurosci Lett 162:149–152CrossRefPubMedGoogle Scholar
  60. 60.
    Reichrath J (2007) Vitamin D and the skin: an ancient friend, revisited. Exp Dermatol 16:618–625CrossRefPubMedGoogle Scholar
  61. 61.
    Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedGoogle Scholar
  62. 62.
    Roe MW, Lemasters JJ, Herman B (1990) Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium 11:63–73CrossRefPubMedGoogle Scholar
  63. 63.
    Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4:579–586CrossRefPubMedGoogle Scholar
  64. 64.
    Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65:1035–1041CrossRefPubMedGoogle Scholar
  65. 65.
    Segre J (2003) Complex redundancy to build a simple epidermal permeability barrier. Curr Opin Cell Biol 15:776–782CrossRefPubMedGoogle Scholar
  66. 66.
    Staud R (2005) Vitamin D: more than just affecting calcium and bone. Curr Rheumatol Rep 7:356–364CrossRefPubMedGoogle Scholar
  67. 67.
    Stempak JG, Ward RT (1964) An improved staining method for electron microscopy. J Cell Biol 22:697–701CrossRefPubMedGoogle Scholar
  68. 68.
    Stout AK, Reynolds IJ (1999) High-affinity calcium indicators underestimate increases in intracellular calcium concentrations associated with excitotoxic glutamate stimulations. Neuroscience 89:91–100CrossRefPubMedGoogle Scholar
  69. 69.
    Szmacinski H, Lakowicz JR (1995) Possibility of simultaneously measuring low and high calcium concentrations using Fura-2 and lifetime-based sensing. Cell Calcium 18:64–75CrossRefPubMedGoogle Scholar
  70. 70.
    Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P (2000) A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28:213–223CrossRefPubMedGoogle Scholar
  71. 71.
    Tordoff MG, Bachmanov AA, Reed DR (2007) Forty mouse strain survey of water and sodium intake. Physiol Behav 91:620–631CrossRefPubMedGoogle Scholar
  72. 72.
    Tsien R, Pozzan T (1989) Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol 172:230–262CrossRefPubMedGoogle Scholar
  73. 73.
    Tu CL, Oda Y, Komuves L, Bikle DD (2004) The role of the calcium-sensing receptor in epidermal differentiation. Cell Calcium 35:265–273CrossRefPubMedGoogle Scholar
  74. 74.
    Tu CL, Chang W, Bikle DD (2007) The role of the calcium sensing receptor in regulating intracellular calcium handling in human epidermal keratinocytes. J Invest Dermatol 127:1074–1083CrossRefPubMedGoogle Scholar
  75. 75.
    Tucker T, Fettiplace R (1995) Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells. Neuron 15:1323–1335CrossRefPubMedGoogle Scholar
  76. 76.
    Ukhanov KY, Flores TM, Hsiao HS, Mohapatra P, Pitts CH, Payne R (1995) Measurement of cytosolic Ca2+ concentration in Limulus ventral photoreceptors using fluorescent dyes. J Gen Physiol 105:95–116CrossRefPubMedGoogle Scholar
  77. 77.
    Vergara J, Escobar A (1993) Detection of Ca2+ transients in skeletal muscle fibers using the low affinity dye Calcium-Green-5N. Biophys J 64:A37Google Scholar
  78. 78.
    Vicanova J, Boelsma E, Mommaas AM, Kempenaar JA, Forslind B, Pallon J, Egelrud T, Koerten HK, Ponec M (1998) Normalization of epidermal calcium distribution profile in reconstructed human epidermis is related to improvement of terminal differentiation and stratum corneum barrier formation. J Invest Dermatol 111:97–106CrossRefPubMedGoogle Scholar
  79. 79.
    Walz B, Zimmermann B, Seidl S (1994) Intracellular Ca 2+ concentration and latency of light-induced Ca 2+ changes in photoreceptors of the honeybee drone. J Comp Physiol [A] 174:421–431Google Scholar
  80. 80.
    Wang ZM, Messi ML, Delbono O (2000) L-Type Ca(2+) channel charge movement and intracellular Ca(2+) in skeletal muscle fibers from aging mice. Biophys J 78:1947–1954CrossRefPubMedGoogle Scholar
  81. 81.
    Wang ZM, Messi ML, Delbono O (1999) Patch-clamp recording of charge movement, Ca(2+) current, and Ca(2+) transients in adult skeletal muscle fibers. Biophys J 77:2709–2716CrossRefPubMedGoogle Scholar
  82. 82.
    Wepf R, Richter T, Koenig K, Dunckelmann K, Sattler M, Biel S, Hintze U, Wittern KP (2002) Re-viewing the structure of the stratum corneum: corneocytes embraces each other. J Invest Dermatol (Abstr 256) 119:250Google Scholar
  83. 83.
    White C, McGeown G (2002) Imaging of changes in sarcoplasmic reticulum [Ca(2+)] using Oregon Green BAPTA 5N and confocal laser scanning microscopy. Cell Calcium 31:151–159CrossRefPubMedGoogle Scholar
  84. 84.
    Wieland P, Fischer JA, Trechsel U, Roth HR, Vetter K, Schneider H, Huch A (1980) Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol 239:E385–E390PubMedGoogle Scholar
  85. 85.
    Wilms CD, Schmidt H, Eilers J (2006) Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium 40:73–79CrossRefPubMedGoogle Scholar
  86. 86.
    Yao Y, Parker I (1994) Ca2+ influx modulation of temporal and spatial patterns of inositol trisphosphate-mediated Ca2+ liberation in Xenopus oocytes. J Physiol 476:17–28PubMedGoogle Scholar
  87. 87.
    Yu ZW, Quinn PJ (1994) Dimethyl sulphoxide: a review of its applications in cell biology. Biosci Rep 14:259–281CrossRefPubMedGoogle Scholar
  88. 88.
    Zhao M, Hollingworth S, Baylor SM (1996) Properties of tri- and tetracarboxylate Ca2+ indicators in frog skeletal muscle fibers. Biophys J 70:896–916CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martin J. Behne
    • 1
  • Susana Sanchez
    • 2
  • Nicholas P. Barry
    • 3
  • Nina Kirschner
    • 1
  • Wilfried Meyer
    • 4
  • Theodora M. Mauro
    • 5
  • Ingrid Moll
    • 1
  • Enrico Gratton
    • 2
  1. 1.Department of Dermatology and VenerologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Laboratory for Fluorescence Dynamics, Department of Biomedical EngineeringUniversity of CaliforniaIrvineUSA
  3. 3.Department of NephrologyUniversity of Colorado Health Science CenterDenverUSA
  4. 4.Anatomical InstituteUniversity Veterinary Medicine FoundationHannoverGermany
  5. 5.Veterans Affairs Medical Center Dermatology DepartmentsUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations