Archives of Dermatological Research

, Volume 303, Issue 2, pp 69–78 | Cite as

Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology

  • Curt M. Treu
  • Omar Lupi
  • Daniel A. Bottino
  • Eliete Bouskela
Mini Review


Technological advances during the last years have enhanced the image quality of the microcirculation. Intravital microscopy (IM) has been considered the “gold standard” for many years, but it can be used mostly in anesthetized animals which is a disadvantage. The nailfold videocapillaroscopy, a non-invasive examination that includes a microscope with an epiillumination system, came afterward, but its major disadvantage is the restricted area available for investigation namely the nailfold capillary bed. The orthogonal polarization spectral (OPS) imaging technique, where reflected light allows the visualization of the microcirculation, was the next non-invasive exam, but it still presents some drawbacks such as suboptimal capillary visualization and image blurring due to red blood cell movements. Excessive probe pressure modifies red blood cell velocity. There is suboptimal imaging of capillaries due to motion-induced image blurring by movements of OPS device, tissue and/or flowing red blood cells. Sidestream dark field (SDF) imaging is the newest tool for microcirculatory research. Illumination is provided by concentrically placed light-emitting diodes to avoid image blurring and to enhance image contrast. It represents a simple and non-invasive imaging technique, with low cost, good portability and high sensitivity that provides fine, well-defined images. In addition, the microcirculation can be studied through laser Doppler flowmetry (LDF) or reflectance-mode confocal-laser-scanning microscopy (RCLM). However, LDF cannot show microcirculatory vessels and high cost of RCLM can be an inconvenience. New applications of SDF technique could include skin microcirculatory evaluation and allow dermatological studies on psoriasis, skin tumors and leprosy.


Nailfold videocapillaroscopy Orthogonal polarization spectral imaging Sidestream dark field imaging Microcirculation 


Conflict of interest

The authors have no conflict of interest to disclose.


  1. 1.
    Altintas MA, Altintas AA, Guggenheim M et al (2010) Insight in human skin microcirculation using in vivo reflectance-mode confocal laser scanning microscopy. J Digit Imaging 23:475–481CrossRefPubMedGoogle Scholar
  2. 2.
    Altintas MA, Meyer-Marcotty M, Altintas AA et al (2009) In vivo reflectance-mode confocal microscopy provides insights in human skin microcirculation and histomorphology. Comput Med Imaging Graph 33:532–536CrossRefPubMedGoogle Scholar
  3. 3.
    Argenziano G, Zalaudek I, Corona R et al (2004) Vascular structures in skin tumors: a dermoscopy study. Arch Dermatol 140:1485–1489CrossRefPubMedGoogle Scholar
  4. 4.
    Braverman IM (2000) The cutaneous microcirculation. J Investig Dermatol Symp Proc 5:3–9CrossRefPubMedGoogle Scholar
  5. 5.
    Carpentier PH (2001) Current techniques for the clinical evaluation of the microcirculation. J Mal Vasc 26:142–147PubMedGoogle Scholar
  6. 6.
    Cerny V, Turek Z, Parizkova R (2007) Orthogonal polarization spectral imaging. Physiol Res 56:141–147PubMedGoogle Scholar
  7. 7.
    Coelho da Mota DS, Furtado E, Bottino DA et al (2009) Effects of buflomedil and pentoxifylline on hamster skin-flap microcirculation: prediction of flap viability using orthogonal polarization spectral imaging. Clinics (Sao Paulo) 64:797–802Google Scholar
  8. 8.
    Cracowski JL, Minson CT, Salvat-Melis M et al (2006) Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci 27:503–508CrossRefPubMedGoogle Scholar
  9. 9.
    Cutolo M, Pizzorni C, Sulli A (2005) Capillaroscopy. Best Pract Res Clin Rheumatol 19:437–452CrossRefPubMedGoogle Scholar
  10. 10.
    Dancour MA, Vaz JL, Bottino DA et al (2006) Nailfold videocapillaroscopy in patients with systemic lupus erythematosus. Rheumatol Int 26:633–637CrossRefPubMedGoogle Scholar
  11. 11.
    De Backer D, Creteur J, Dubois MJ et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408CrossRefPubMedGoogle Scholar
  12. 12.
    Den Uil CA, Lagrand WK, van der Ent EM et al (2009) The effects of intra-aortic balloon pump support on macrocirculation and tissue microcirculation in patients with cardiogenic shock. Cardiology 114:42–46CrossRefGoogle Scholar
  13. 13.
    Den Uil CA, Maat AP, Lagrand WK et al (2009) Mechanical circulatory support devices improve tissue perfusion in patients with end-stage heart failure or cardiogenic shock. J Heart Lung Transpl 28:906–911CrossRefGoogle Scholar
  14. 14.
    Dobbe JG, Streekstra GJ, Atasever B et al (2008) Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput 46:659–670CrossRefPubMedGoogle Scholar
  15. 15.
    Draisma A, Bemelmans R, van der Hoeven JG et al (2009) Microcirculation and vascular reactivity during endotoxemia and endotoxin tolerance in humans. Shock 31:581–585CrossRefPubMedGoogle Scholar
  16. 16.
    Dubois MJ, De Backer D, Creteur J et al (2003) Effect of vasopressin on sublingual microcirculation in a patient with distributive shock. Intensive Care Med 29:1020–1023PubMedGoogle Scholar
  17. 17.
    Elbers PW, Ozdemir A, van Iterson M et al (2009) Microcirculatory imaging in cardiac anesthesia: ketanserin reduces blood pressure but not perfused capillary density. J Cardiothorac Vasc Anesth 23:95–101CrossRefPubMedGoogle Scholar
  18. 18.
    Ellis CG, Ellsworth ML, Pittman RN et al (1992) Application of image analysis for evaluation of red blood cell dynamics in capillaries. Microvasc Res 44:214–225CrossRefPubMedGoogle Scholar
  19. 19.
    Erol-Yilmaz A, Atasever B, Mathura K et al (2007) Cardiac resynchronization improves microcirculation. J Cardiac Fail 13:95–99CrossRefGoogle Scholar
  20. 20.
    Fagrell B (1973) Vital capillary microscopy. A clinical method for studying changes of the nutritional skin capillaries in legs with arteriosclerosis obliterans. Scand J Clin Lab Investig Suppl 133:2–50Google Scholar
  21. 21.
    Fries M, Weil MH, Chang YT et al (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S457CrossRefPubMedGoogle Scholar
  22. 22.
    Gallucci F, Russo R, Buono R et al (2008) Indications and results of videocapillaroscopy in clinical practice. Adv Med Sci 53:149–157CrossRefPubMedGoogle Scholar
  23. 23.
    Genzel-Boroviczeny O, Strotgen J, Harris AG et al (2002) Orthogonal polarization spectral imaging (OPS): a novel method to measure the microcirculation in term and preterm infants transcutaneously. Pediatr Res 51:386–391CrossRefPubMedGoogle Scholar
  24. 24.
    Gerger A, Koller S, Weger W et al (2006) Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer 107:193–200CrossRefPubMedGoogle Scholar
  25. 25.
    Goedhart PT, Khalilzada M, Bezemer R et al (2007) Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15:15101–15114CrossRefPubMedGoogle Scholar
  26. 26.
    Goertz O, Ring A, Kohlinger A et al (2010) Orthogonal polarization spectral imaging: a tool for assessing burn depths? Ann Plast Surg 64:217–221CrossRefPubMedGoogle Scholar
  27. 27.
    Gonzalez S, Swindells K, Rajadhyaksha M et al (2003) Changing paradigms in dermatology: confocal microscopy in clinical and surgical dermatology. Clin Dermatol 21:359–369CrossRefPubMedGoogle Scholar
  28. 28.
    Groner W, Winkelman JW, Harris AG et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212CrossRefPubMedGoogle Scholar
  29. 29.
    Halfoun VL, Pires ML, Fernandes TJ et al (2003) Videocapillaroscopy and diabetes mellitus: area of transverse segment in nailfold capillary loops reflects vascular reactivity. Diabetes Res Clin Pract 61:155–160CrossRefPubMedGoogle Scholar
  30. 30.
    Harris AG, Sinitsina I, Messmer K (2000) The Cytoscan Model E-II, a new reflectance microscope for intravital microscopy: comparison with the standard fluorescence method. J Vasc Res 37:469–476CrossRefPubMedGoogle Scholar
  31. 31.
    Hiedl S, Schwepcke A, Weber F et al (2010) Microcirculation in preterm infants: profound effects of patent ductus arteriosus. J Pediatr 156:191–196CrossRefPubMedGoogle Scholar
  32. 32.
    Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4):S13–S19Google Scholar
  33. 33.
    Jorneskog G, Brismar K, Fagrell B (1998) Pronounced skin capillary ischemia in the feet of diabetic patients with bad metabolic control. Diabetologia 41:410–415CrossRefPubMedGoogle Scholar
  34. 34.
    Jung C, Ferrari M, Gradinger R et al (2008) Evaluation of the microcirculation during extracorporeal membrane-oxygenation. Clin Hemorheol Microcirc 40:311–314PubMedGoogle Scholar
  35. 35.
    Klijn E, Den Uil CA, Bakker J et al (2008) The heterogeneity of the microcirculation in critical illness. Clin Chest Med 29:643–654CrossRefPubMedGoogle Scholar
  36. 36.
    Klyscz T, Junger M, Jung F et al (1997) Cap image—a new kind of computer-assisted video image analysis system for dynamic capillary microscopy. Biomed Tech (Berl) 42:168–175CrossRefGoogle Scholar
  37. 37.
    Koch M, De Backer D, Vincent JL et al (2008) Effects of propofol on human microcirculation. Br J Anaesth 101:473–478CrossRefPubMedGoogle Scholar
  38. 38.
    Kraemer-Aguiar LG, Laflor CM, Bouskela E (2008) Skin microcirculatory dysfunction is already present in normoglycemic subjects with metabolic syndrome. Metabolism 57:1740–1746CrossRefPubMedGoogle Scholar
  39. 39.
    Kroth J, Weidlich K, Hiedl S et al (2008) Functional vessel density in the first month of life in preterm neonates. Pediatr Res 64:567–571CrossRefPubMedGoogle Scholar
  40. 40.
    Kubli S, Waeber B, le-Ave A et al (2000) Reproducibility of laser Doppler imaging of skin blood flow as a tool to assess endothelial function. J Cardiovasc Pharmacol 36:640–648CrossRefPubMedGoogle Scholar
  41. 41.
    La Civita L, Rossi M, Vagheggini G et al (1998) Microvascular involvement in systemic sclerosis: laser Doppler evaluation of reactivity to acetylcholine and sodium nitroprusside by iontophoresis. Ann Rheum Dis 57:52–55CrossRefPubMedGoogle Scholar
  42. 42.
    Lam K, Sjauw KD, Henriques JP et al (2009) Improved microcirculation in patients with an acute ST-elevation myocardial infarction treated with the Impella LP2.5 percutaneous left ventricular assist device. Clin Res Cardiol 98:311–318CrossRefPubMedGoogle Scholar
  43. 43.
    Langer S, Hatz R, Harris AG et al (2001) Assessing the microcirculation in a burn wound by use of OPS imaging. Eur J Med Res 6:231–234PubMedGoogle Scholar
  44. 44.
    Lascasas-Porto CL, Milhomens AL, Virgini-Magalhaes CE et al (2008) Use of microcirculatory parameters to evaluate clinical treatments of chronic venous disorder (CVD). Microvasc Res 76:66–72CrossRefPubMedGoogle Scholar
  45. 45.
    Lindbom L, Tuma RF, Arfors KE (1982) Blood flow in the rabbit tenuissimus muscle. Influence of preparative procedures for intravital microscopic observation. Acta Physiol Scand 114:121–127CrossRefPubMedGoogle Scholar
  46. 46.
    Lindert J, Werner J, Redlin M et al (2002) OPS imaging of human microcirculation: a short technical report. J Vasc Res 39:368–372CrossRefPubMedGoogle Scholar
  47. 47.
    Lupi O, Semenovitch I, Treu C et al (2008) Orthogonal polarization technique in the assessment of human skin microcirculation. Int J Dermatol 47:425–431CrossRefPubMedGoogle Scholar
  48. 48.
    Lupi O, Semenovitch IJ, Treu C et al (2007) Evaluation of the effects of caffeine in the microcirculation and edema on thighs and buttocks using the orthogonal polarization spectral imaging and clinical parameters. J Cosmet Dermatol 6:102–107CrossRefPubMedGoogle Scholar
  49. 49.
    Maricq HR, Downey JA, LeRoy EC (1976) Standstill of nailfold capillary blood flow during cooling in scleroderma and Raynaud’s syndrome. Blood Vessels 13:338–349PubMedGoogle Scholar
  50. 50.
    Maricq HR, Spencer-Green G, LeRoy EC (1976) Skin capillary abnormalities as indicators of organ involvement in scleroderma (systemic sclerosis), Raynaud’s syndrome and dermatomyositis. Am J Med 61:862–870CrossRefPubMedGoogle Scholar
  51. 51.
    Martin DS, Ince C, Goedhart P et al (2009) Abnormal blood flow in the sublingual microcirculation at high altitude. Eur J Appl Physiol 106:473–478CrossRefPubMedGoogle Scholar
  52. 52.
    Mathura KR, Vollebregt KC, Boer K et al (2001) Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91:74–78PubMedGoogle Scholar
  53. 53.
    Milstein DM, Bezemer R, Lindeboom JA et al (2009) The acute effects of CMF-based chemotherapy on maxillary periodontal microcirculation. Cancer Chemother Pharmacol 64:1047–1052CrossRefPubMedGoogle Scholar
  54. 54.
    Nencioni A, Trzeciak S, Shapiro NI (2009) The microcirculation as a diagnostic and therapeutic target in sepsis. Intern Emerg Med 4:413–415CrossRefPubMedGoogle Scholar
  55. 55.
    Nieuwdorp M, Mooij HL, Kroon J et al (2006) Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55:1127–1132CrossRefPubMedGoogle Scholar
  56. 56.
    Nivoit P, Wiernsperger N, Moulin P et al (2003) Effect of glycated LDL on microvascular tone in mice: a comparative study with LDL modified in vitro or isolated from diabetic patients. Diabetologia 46:1550–1558CrossRefPubMedGoogle Scholar
  57. 57.
    Pan Y, Chamberlain AJ, Bailey M et al (2008) Dermatoscopy aids in the diagnosis of the solitary red scaly patch or plaque-features distinguishing superficial basal cell carcinoma, intraepidermal carcinoma, and psoriasis. J Am Acad Dermatol 59:268–274CrossRefPubMedGoogle Scholar
  58. 58.
    Scholz T, Evans GR (2008) Flap microcirculation: effects of tissue manipulation and in situ preparation during soft tissue harvest. J Reconstr Microsurg 24:277–283CrossRefPubMedGoogle Scholar
  59. 59.
    Schon MP, Boehncke WH (2005) Psoriasis. N Engl J Med 352:1899–1912CrossRefPubMedGoogle Scholar
  60. 60.
    Slaaf DW, Tangelder GJ, Reneman RS et al (1987) A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp 6:391–397PubMedGoogle Scholar
  61. 61.
    Steeghs N, Gelderblom H, Roodt JO et al (2008) Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res 14:3470–3476CrossRefPubMedGoogle Scholar
  62. 62.
    Stinco G, Lautieri S, Piccirillo F et al (2009) Response of cutaneous microcirculation to treatment with mometasone furoate in patients with psoriasis. Clin Exp Dermatol 34:915–919CrossRefPubMedGoogle Scholar
  63. 63.
    Taylor AE, Moore T, Paisley P (2002) The time has finally arrived: use of intravital microscopy in the airway circulation. Am J Physiol Lung Cell Mol Physiol 282:L957–L958PubMedGoogle Scholar
  64. 64.
    Tritto I, Ambrosio G (1999) Spotlight on microcirculation: an update. Cardiovasc Res 42:600–606CrossRefPubMedGoogle Scholar
  65. 65.
    Vajkoczy P, Ullrich A, Menger MD (2000) Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia 2:53–61CrossRefPubMedGoogle Scholar
  66. 66.
    Vaz JL, Dancour MA, Bottino DA et al (2004) Nailfold videocapillaroscopy in primary antiphospholipid syndrome (PAPS). Rheumatology (Oxford) 43:1025–1027CrossRefGoogle Scholar
  67. 67.
    Virgini-Magalhaes CE, Porto CL, Fernandes FF et al (2006) Use of microcirculatory parameters to evaluate chronic venous insufficiency. J Vasc Surg 43:1037–1044CrossRefPubMedGoogle Scholar
  68. 68.
    Weidlich K, Kroth J, Hiedl CN et al (2009) Changes in microcirculation as early markers for infection in preterm infants—an observational prospective study. Pediatr Res 66(4):461–465Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Curt M. Treu
    • 1
    • 2
  • Omar Lupi
    • 1
  • Daniel A. Bottino
    • 1
  • Eliete Bouskela
    • 1
  1. 1.Clinical and Experimental Research Laboratory on Vascular Biology (BioVasc), Biomedical CenterState University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Rio de JaneiroBrazil

Personalised recommendations