Archives of Dermatological Research

, Volume 300, Issue 2, pp 69–80

Parthenolide-depleted Feverfew (Tanacetum parthenium) protects skin from UV irradiation and external aggression

  • Katharine Martin
  • Runa Sur
  • Frank Liebel
  • Neena Tierney
  • Peter Lyte
  • Michelle Garay
  • Thierry Oddos
  • Mike Anthonavage
  • Stan Shapiro
  • Michael Southall
Original Paper

Abstract

The skin is under continual assault from a variety of damaging environmental factors such as ultraviolet irradiation and atmospheric pollutants, and as organisms age the cumulative damage exceeds the capacity of endogenous antioxidant defenses resulting in chronic inflammation and premature aging. Botanical extracts such as Feverfew containing naturally occurring antioxidants could replenish the depleted cutaneous stores and perhaps forestall these degenerative changes. A parthenolide-depleted extract of Feverfew (PD-Feverfew), which was free of sensitization potential, was found to possess free radical scavenging activity against a wide range of reactive oxygen species and with greater activity than Vitamin C. In vitro, PD-Feverfew restored cigarette smoke-mediated depletion of cellular thiols, attenuated the formation of UV-induced hydrogen peroxide and reduced pro-inflammatory cytokine release. In vivo, topical PD-Feverfew reduced UV-induced epidermal hyperplasia, DNA damage and apoptosis. In a clinical study PD-Feverfew treatment significantly reduced erythema versus placebo 24 h post-UV exposure. Through the ability to scavenge free radicals, preserve endogenous antioxidant levels, reduce DNA damage and induce DNA repair enzymes, which can help repair damaged DNA, parthenolide-depleted extract of Feverfew may protect skin from the numerous external aggressions encountered daily by the skin and reduce the damage to oxidatively challenged skin.

Keywords

Feverfew Flavonoids Oxidative stress Parthenolide Reactive oxygen species Inflammation 

Abbreviations

ROS

Reactive oxygen species

UVA

Ultraviolet A

UVB

Ultraviolet B

References

  1. 1.
    Afaq F, Mukhtar H (2002) Photochemoprevention by botanical antioxidants. Skin Pharmacol Appl Skin Physiol 15:297–306PubMedCrossRefGoogle Scholar
  2. 2.
    Armeni T, Battino M, Stronati A, Pugnaloni A, Tomassini G, Rosi G et al (2001) Total antioxidant capacity and nuclear DNA damage in keratinocytes after exposure to H2O2. Biol Chem 382:1697–1705PubMedCrossRefGoogle Scholar
  3. 3.
    Assefa Z, Van Laethem A, Garmyn M, Agostinis P (2005) Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim Biophys Acta 1755:90–106PubMedGoogle Scholar
  4. 4.
    Aubin F (2003) Mechanisms involved in ultraviolet light-induced mmunosuppression. Eur J Dermatol 13:515–523PubMedGoogle Scholar
  5. 5.
    Babulak S, Rhein LD, Scala DD, Simion AF, Grove GL (1986) Quantitation of erythema in a soap chamber test using the Minolta chroma (reflectance) meter: comparison of instrumental results with visual assessments. J Soc Cosmet Chem 37:475–479Google Scholar
  6. 6.
    Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126:2565–2575PubMedCrossRefGoogle Scholar
  7. 7.
    Bilimoria MH, Ecobichon DJ (1992) Protective antioxidant mechanisms in rat and guinea pig tissues challenged by acute exposure to cigarette smoke. Toxicology 72:131–144PubMedCrossRefGoogle Scholar
  8. 8.
    Bombardelli E, Morazzoni P (2001) Tanacetum parthenium extract and method of obtaining same. United States Patent US6,224,875 B1Google Scholar
  9. 9.
    Carnevali S, Petruzzelli S, Longoni B, Vanacore R, Barale R, Cipollini M et al (2003) Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am J Physiol 284:L955–L963Google Scholar
  10. 10.
    D’Errico M, Lemma T, Calcagnile A, Proietti De Santis L, Dogliotti E (2007) Cell type and DNA damage-specific response of human skin cells to environmental agents. Mutat Res 614:37–47PubMedGoogle Scholar
  11. 11.
    El Hindi T, Ehlers G, Demchuk M, Pfitzner I (2004) Determination of the antioxidant capacity of an antioxidant combination using the fluoroscan assay in vitro and visualization of its effects using histological methods. Arch Dermatol Res 296:258–264PubMedCrossRefGoogle Scholar
  12. 12.
    Gonzalez S, Astner S, An W, Goukassian D, Pathak MA (2003) Dietary lutein/zeaxanthin decreases ultraviolet B-induced epidermal hyperproliferation and acute inflammation in hairless mice. J Invest Dermatol 121:399–405PubMedCrossRefGoogle Scholar
  13. 13.
    Groenewegen WA, Knight DW, Heptinstall S (1992) Progress in the medicinal chemistry of the herb feverfew. Prog Med Chem 29:217–238PubMedGoogle Scholar
  14. 14.
    Haratake A, Uchida Y, Schmuth M, Tanno O, Yasuda R, Epstein JH et al (1997) UVB-induced alterations in permeability barrier function: roles for epidermal hyperproliferation and thymocyte-mediated response. J Invest Dermatol 108:769–775PubMedCrossRefGoogle Scholar
  15. 15.
    Hausen BM, Osmundsen PE (1983) Contact allergy to parthenolide in Tanacetum parthenium (L.) Schulz-Bip. (feverfew, Asteraceae) and cross-reactions to related sesquiterpene lactone containing Compositae species. Acta Derm Venereol 63:308–314PubMedGoogle Scholar
  16. 16.
    Heptinstall S (1988) Feverfew—an ancient remedy for modern times? J R Soc Med 81:373–374PubMedGoogle Scholar
  17. 17.
    Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374PubMedCrossRefGoogle Scholar
  18. 18.
    Hu HL, Forsey RJ, Blades TJ, Barratt ME, Parmar P, Powell JR (2000) Antioxidants may contribute in the fight against ageing: an in vitro model. Mech Ageing Dev 121:217–230PubMedCrossRefGoogle Scholar
  19. 19.
    Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. J Agric Food Chem 50:1815–1821PubMedCrossRefGoogle Scholar
  20. 20.
    Jain NK, Kulkarni SK (1999) Antinociceptive and anti-inflammatory effects of Tanacetum parthenium L. extract in mice and rats. J Ethnopharmacol 68:251–259PubMedCrossRefGoogle Scholar
  21. 21.
    Kligman LH (1989) The ultraviolet-irradiated hairless mouse: a model for photoaging. J Am Acad Dermatol 21:623–631PubMedCrossRefGoogle Scholar
  22. 22.
    Kohen R, Gati I (2000) Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology 148:149–157PubMedCrossRefGoogle Scholar
  23. 23.
    Kurtz E, Walczak VR (2005) Clinical safety review of topical emollient formulations containing parthenolide-free-extract of Feverfew. J Am Acad Dermatol 52:P87Google Scholar
  24. 24.
    Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM (2001) The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol 8:759–766PubMedCrossRefGoogle Scholar
  25. 25.
    MacNee W, Bridgeman MM, Marsden M, Drost E, Lannan S, Selby C et al (1991) The effects of N-acetylcysteine and glutathione on smoke-induced changes in lung phagocytes and epithelial cells. Am J Med 91:60S–66SPubMedCrossRefGoogle Scholar
  26. 26.
    Maia AM, Baby AR, Pinto CA, Yasaka WJ, Suenaga E, Kaneko TM et al (2006) Influence of sodium metabisulfite and glutathione on the stability of vitamin C in O/W emulsion and extemporaneous aqueous gel. Int J Pharm 322:130–135PubMedCrossRefGoogle Scholar
  27. 27.
    Marks R (1995) An overview of skin cancers. Incidence and causation. Cancer 75:607–612PubMedCrossRefGoogle Scholar
  28. 28.
    Muller T, Gebel S (1994) Heme oxygenase expression in Swiss 3T3 cells following exposure to aqueous cigarette smoke fractions. Carcinogenesis 15:67–72PubMedCrossRefGoogle Scholar
  29. 29.
    Nakajima S, Lan L, Kanno S, Takao M, Yamamoto K, Eker AP et al (2004) UV light-induced DNA damage and tolerance for the survival of nucleotide excision repair-deficient human cells. J Biol Chem 279:46674–46677PubMedCrossRefGoogle Scholar
  30. 30.
    Nguyen H, Finkelstein E, Reznick A, Cross C, van der Vliet A (2001) Cigarette smoke impairs neutrophil respiratory burst activation by aldehyde-induced thiol modifications. Toxicology 160:207–217PubMedCrossRefGoogle Scholar
  31. 31.
    Nishi J, Ogura R, Sugiyama M, Hidaka T, Kohno M (1991) Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure. J Invest Dermatol 97:115–119PubMedCrossRefGoogle Scholar
  32. 32.
    Ogura R, Sugiyama M, Nishi J, Haramaki N (1991) Mechanism of lipid radical formation following exposure of epidermal homogenate to ultraviolet light. J Invest Dermatol 97:1044–1047PubMedCrossRefGoogle Scholar
  33. 33.
    Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626PubMedCrossRefGoogle Scholar
  34. 34.
    Pathak MA, Stratton K (1968) Free radicals in human skin before and after exposure to light. Arch Biochem Biophys 123:468–476PubMedCrossRefGoogle Scholar
  35. 35.
    Paulsen E, Christensen LP, Andersen KE (2007) Compositae dermatitis from airborne parthenolide. Br J Dermatol 156:510–515PubMedCrossRefGoogle Scholar
  36. 36.
    Placzek M, Gaube S, Kerkmann U, Gilbertz KP, Herzinger T, Haen E et al (2005) Ultraviolet B-induced DNA damage in human epidermis is modified by the antioxidants ascorbic acid and D-alpha-tocopherol. J Invest Dermatol 124:304–307PubMedCrossRefGoogle Scholar
  37. 37.
    Rahman I, MacNee W (1999) Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease. Am J Physiol 277:L1067–L1088PubMedGoogle Scholar
  38. 38.
    Raitio A, Kontinen J, Rasi M, Bloigu R, Roning J, Oikarinen A (2004) Comparison of clinical and computerized image analyses in the assessment of skin ageing in smokers and non-smokers. Acta Dermatol Venereol 84:422–427CrossRefGoogle Scholar
  39. 39.
    Reznick AZ, Cross CE, Hu ML, Suzuki YJ, Khwaja S, Safadi A et al (1992) Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem J 286:607–611PubMedGoogle Scholar
  40. 40.
    Rittie L, Fisher GJ (2002) UV-light-induced signal cascades and skin aging. Ageing Res Rev 1:705–720PubMedCrossRefGoogle Scholar
  41. 41.
    Rusznak C, Mills PR, Devalia JL, Sapsford RJ, Davies RJ, Lozewicz S (2000) Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 23:530–536PubMedGoogle Scholar
  42. 42.
    Schwarz T (1988) [The significance of epidermal cytokines in UV-induced immune suppression]. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete 39:642–646PubMedGoogle Scholar
  43. 43.
    Sterenborg HJ, de Gruijl FR, van der Leun JC (1986) UV-induced epidermal hyperplasia in hairless mice. Photodermatol 3:206–214PubMedGoogle Scholar
  44. 44.
    Stewart MS, Cameron GS, Pence BC (1996) Antioxidant nutrients protect against UVB-induced oxidative damage to DNA of mouse keratinocytes in culture. J Invest Dermatol 106:1086–1089PubMedCrossRefGoogle Scholar
  45. 45.
    Tanaka H, Ono Y, Nakata S, Shintani Y, Sakakibara N, Morita A (2007) Tobacco smoke extract induces premature skin aging in mouse. J Dermatol Sci 46:69–71PubMedCrossRefGoogle Scholar
  46. 46.
    van der Vaart H, Postma DS, Timens W, ten Hacken NH (2004) Acute effects of cigarette smoke on inflammation and oxidative stress: a review. Thorax 59:713–721PubMedCrossRefGoogle Scholar
  47. 47.
    Vayalil PK, Mittal A, Hara Y, Elmets CA, Katiyar SK (2004) Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. J Invest Dermatol 122:1480–1487PubMedCrossRefGoogle Scholar
  48. 48.
    Vink AA, Roza L (2001) Biological consequences of cyclobutane pyrimidine dimers. J Photochem Photobiol 65:101–104CrossRefGoogle Scholar
  49. 49.
    Wang H, Kochevar IE (2005) Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes. Free Radic Biol Med 38:890–897PubMedCrossRefGoogle Scholar
  50. 50.
    Wang H, Liu X, Umino T, Skold CM, Zhu Y, Kohyama T et al (2001) Cigarette smoke inhibits human bronchial epithelial cell repair processes. Am J Respir Cell Mol Biol 25:772–779PubMedGoogle Scholar
  51. 51.
    Yoshida E, Watanabe T, Takata J, Yamazaki A, Karube Y, Kobayashi S (2006) J Invest Dermatol 126:1633–1640PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2007

Authors and Affiliations

  • Katharine Martin
    • 1
  • Runa Sur
    • 1
  • Frank Liebel
    • 1
  • Neena Tierney
    • 1
  • Peter Lyte
    • 1
  • Michelle Garay
    • 1
  • Thierry Oddos
    • 2
  • Mike Anthonavage
    • 1
  • Stan Shapiro
    • 1
  • Michael Southall
    • 1
    • 3
  1. 1.Johnson & Johnson Skin Research CenterCPPW, a unit of Johnson & Johnson Consumer Companies, Inc.SkillmanUSA
  2. 2.Johnson & Johnson Skin Research CenterCPPW, a unit of Johnson & Johnson Consumer Companies, Inc.Val de ReuilFrance
  3. 3.Johnson & Johnson Consumer and Personal Products WorldwideSkillmanUSA

Personalised recommendations