Archives of Dermatological Research

, Volume 299, Issue 7, pp 337–343 | Cite as

Ultrastructural localization of Fras1 in the sublamina densa of embryonic epithelial basement membranes

  • Yannis Dalezios
  • Babis Papasozomenos
  • Petros Petrou
  • Georges ChalepakisEmail author
Original Paper


Fras1 is the first identified member of a protein family comprising Fras1 and the related extracellular matrix proteins Frem1, Frem2 and Frem3. Mutations in Fras1, Frem1 and Frem2 have been associated with the bleb phenotype in mouse, whereas mutations in the human orthologs FRAS1 and FREM2 have been implicated in the pathogenesis of the human Fraser syndrome. Bleb mutant mice are characterized by embryonic sub-epidermal blistering, unilateral or bilateral renal agenesis or dysgenesis, cutaneous syndactyly and fused eyelids. As revealed by immunofluorescence, Fras1 co-localizes with the markers of epithelial basement membranes and is ultrastructurally detected underneath the lamina densa of embryonic mouse epithelia. Since the loss of Fras1 mainly affects the cohesiveness of the embryonic skin basement membrane with its underlying mesenchyme, we compared here the ultrastructural localization of Fras1 in the dermal–epidermal junction and in the basement membrane of other embryonic epithelia that do not show any overt phenotype using preembedding immunocytochemistry. Fras1 immunoreactivity was detected in all epithelia examined, within the sublamina densa adjacent to stromal tissue, as clustered gold/silver enhanced depositions, usually attached to anchoring fibrils. Interestingly, clusters corresponding to Fras1 were frequently detected in close proximity to mesenchymal cells, indicating that Fras1 could serve as a direct link between the sublamina densa and mesenchyme. The localization of Fras1 is consistent with previous results indicating that Fras1 exerts its function below the lamina densa and that Fras1 displays the same localization pattern in all epithelial basement membranes.


Fras1 Mouse bleb mutants Fraser syndrome Basement membrane 



We dedicate the present study to the memory of V. K. Galanopoulos, who first established the infrastructure and conditions for ultrastructural detection of the Fras1 protein. The authors thank Sandra Siakouli for excellent technical assistance and Evangelos Pavlakis and Rena Chiotaki for critical review of the manuscript. This work was supported by grants from the Greek General Secretariat for Research and Technology (PENED 03EΔ779) and the European Social Fund and National resources.


  1. 1.
    Andrikopoulos K, Liu X, Keene DR, Jaenisch R, Ramirez F (1995) Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nat Genet 9:31–36PubMedCrossRefGoogle Scholar
  2. 2.
    Bonaldo P, Braghetta P, Zanetti M, Piccolo S, Volpin D, Bressan GM (1998) Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum Mol Genet 7:2135–2140PubMedCrossRefGoogle Scholar
  3. 3.
    Bruckner-Tuderman L, Hopfner B, Hammami-Hauasli N (1999) Biology of anchoring fibrils: lessons from dystrophic epidermolysis bullosa. Matrix Biol 18:43–54PubMedCrossRefGoogle Scholar
  4. 4.
    Burg MA, Tillet E, Timpl R, Stallcup WB (1996) Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules. J Biol Chem 271:26110–26116PubMedCrossRefGoogle Scholar
  5. 5.
    Burgeson RE (1993) Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J Invest Dermatol 101:252–255PubMedCrossRefGoogle Scholar
  6. 6.
    Burgeson RE, Christiano AM (1997) The dermal–epidermal junction. Curr Opin Cell Biol 9:651–658PubMedCrossRefGoogle Scholar
  7. 7.
    Chan LS (1997) Human skin basement membrane in health and in autoimmune diseases. Front Biosci 15:343–352Google Scholar
  8. 8.
    Chiotaki R, Petrou P, Giakoumaki E, Pavlakis E, Sitaru C, Chalepakis G (2007) Spatiotemporal distribution of Fras1/Frem proteins during mouse embryonic development. Gene Expr Patterns 7:381–388PubMedCrossRefGoogle Scholar
  9. 9.
    Dalezios Y, Lujan R, Shigemoto R, Roberts JDB, Somogyi P (2002) Enrichment of mGluR7a in the presynaptic active zones of GABAergic and non-GABAergic terminals on interneurons in the rat somatosensory cortex. Cereb Cortex 12:961–974PubMedCrossRefGoogle Scholar
  10. 10.
    Darling S, Gossler A (1994) A mouse model for Fraser syndrome? Clin Dysmorphol 3:91–95PubMedCrossRefGoogle Scholar
  11. 11.
    Erickson AC, Couchman JR (2000) Still more complexity in mammalian basement membranes. J Histochem Cytochem 48:1291–1306PubMedGoogle Scholar
  12. 12.
    Goretzki L, Burg MA, Grako KA, Stallcup WB (1999) High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J Biol Chem 274:16831–16837PubMedCrossRefGoogle Scholar
  13. 13.
    Heinonen S, Mannikko M, Klement JF, Whitaker-Menezes D, Murphy GF, Uitto J (1999) Targeted inactivation of the type VII collagen gene (Col7a1) in mice results in severe blistering phenotype: a model for recessive dystrophic epidermolysis bullosa. J Cell Sci 112:3641–3648PubMedGoogle Scholar
  14. 14.
    Jadeja S, Smyth I, Pitera JE, Taylor MS, van Haelst M, Bentley E, McGregor L, Hopkins J, Chalepakis G, Philip N, Perez-Aytes A, Watt FM, Darling SM, Jackson I, Woolf AS, Scambler PJ (2005) Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet 37:520–525PubMedCrossRefGoogle Scholar
  15. 15.
    Keene DR, Sakai LY, Lunstrum GP, Morris NP, Burgeson RE (1987) Type VII collagen forms an extended network of anchoring fibrils. J Cell Biol 104:611–621PubMedCrossRefGoogle Scholar
  16. 16.
    Kiyozumi D, Osada A, Sugimoto N, Weber CN, Ono Y, Imai T, Okada A, Sekiguchi K (2005) Identification of a novel cell-adhesive protein spatiotemporally expressed in the basement membrane of mouse developing hair follicle. Exp Cell Res 306:9–23PubMedCrossRefGoogle Scholar
  17. 17.
    Kiyozumi D, Sugimoto N, Sekiguchi K (2006) Breakdown of the reciprocal stabilization of QBRICK/Frem1 Fras1 and Frem2 at the basement membrane provokes Fraser syndrome-like defects. Proc Natl Acad Sci 103:11981–11986PubMedCrossRefGoogle Scholar
  18. 18.
    McGregor L, Makela V, Darling SM, Vrontou S, Chalepakis G, Roberts C, Smart N, Rutland P, Prescott N, Hopkins J, Bentley E, Shaw A, Roberts E, Mueller R, Jadeja S, Philip N, Nelson J, Francannet C, Perez-Aytes A, Megarbane A, Kerr B, Wainwright B, Woolf AS, Winter RM, Scambler PJ (2003) Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat Genet 34:203–208PubMedCrossRefGoogle Scholar
  19. 19.
    McMillan JR, Akiyama M, Shimizu H (2003) Epidermal basement membrane zone components: ultrastructural distribution and molecular interactions. J Dermatol Sci 31:169–177PubMedCrossRefGoogle Scholar
  20. 20.
    Moll R, Moll I (1998) Epidermal adhesion molecules and basement membrane components as target structures of autoimmunity. Virchows Arch 432:487–504PubMedCrossRefGoogle Scholar
  21. 21.
    Petrou P, Pavlakis E, Dalezios Y, Galanopoulos VK, Chalepakis G (2005) Basement membrane distortions impair lung lobation and capillary organization in the mouse model for Fraser syndrome. J Biol Chem 280:10350–10356PubMedCrossRefGoogle Scholar
  22. 22.
    Petrou P, Chiotaki R, Dalezios Y, Chalepakis G (2007) Overlapping and divergent localization of Frem1 and Fras1 and its functional implications during mouse embryonic development. Exp Cell Res 313:910–920PubMedCrossRefGoogle Scholar
  23. 23.
    Relan NK, Schuger L (1999) Basement membranes in development. Pediatr Dev Pathol 2:103–118PubMedCrossRefGoogle Scholar
  24. 24.
    Sakai LY, Keene DR, Morris NP, Burgeson RE (1986) Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol 103:1577–1586PubMedCrossRefGoogle Scholar
  25. 25.
    Shimizu H, Ishiko A, Masunaga T, Kurihara Y, Sato M, Bruckner-Tuderman L, Nishikawa T (1997) Most anchoring fibrils in human skin originate and terminate in the lamina densa. Lab Invest 76:753–763PubMedGoogle Scholar
  26. 26.
    Slavotinek AM, Tifft CJ (2002) Fraser syndrome and cryptophthalmos: Review of the diagnostic criteria and evidence for phenotypic modules in complex malformation syndromes. J Med Genet 39:623–633PubMedCrossRefGoogle Scholar
  27. 27.
    Smyth I, Du X, Taylor MS, Justice MJ, Beutler B, Jackson IJ (2004) The extracellular matrix gene Frem1 is essential for the normal adhesion of the embryonic epidermis. Proc Natl Acad Sci 101:13560–13565PubMedCrossRefGoogle Scholar
  28. 28.
    Smyth I, Scambler PJ (2005) The genetics of Fraser syndrome and the blebs mouse mutants. Hum Mol Genet 2:269–274CrossRefGoogle Scholar
  29. 29.
    Takamiya K, Kostourou V, Adams S, Jadeja S, Chalepakis G, Scambler PJ, Huganir RL, Adams RH (2004) A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat Genet 36:172–177PubMedCrossRefGoogle Scholar
  30. 30.
    Tillet E, Gential B, Garrone R, Stallcup WB (2002) NG2 proteoglycan mediates beta1 integrin-independent cell adhesion and spreading on collagen VI. J Cell Biochem 86:726–736PubMedCrossRefGoogle Scholar
  31. 31.
    Timmer JR, Mak TW, Manova K, Anderson KV, Niswander L (2005) Tissue morphogenesis and vascular stability require the Frem2 protein product of the mouse myelencephalic blebs gene. Proc Natl Acad Sci 102:11746–11750PubMedCrossRefGoogle Scholar
  32. 32.
    Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502PubMedCrossRefGoogle Scholar
  33. 33.
    Vrontou S, Petrou P, Meyer BI, Galanopoulos VK, Imai K, Yanagi M, Chowdhury K, Scambler PJ, Chalepakis G (2003) Fras1 deficiency results in cryptophthalmos, renal agenesis and bleb phenotype in mice. Nat Genet 34:209–214PubMedCrossRefGoogle Scholar
  34. 34.
    Winter RM (1990) Fraser syndrome and mouse ‘bleb’ mutants. Clin Genet 37:494–495PubMedCrossRefGoogle Scholar
  35. 35.
    Yurchenco PD, Amenta PS, Patton BL (2004) Basement membrane assembly stability and activities observed through a developmental lens. Matrix Biol 22:521–538PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yannis Dalezios
    • 1
    • 2
  • Babis Papasozomenos
    • 3
  • Petros Petrou
    • 3
    • 4
  • Georges Chalepakis
    • 3
    Email author
  1. 1.Department of Basic Sciences, Faculty of MedicineUniversity of CreteHeraklion, CreteGreece
  2. 2.Institute of Applied and Computational MathematicsFORTHHeraklion, CreteGreece
  3. 3.Department of BiologyUniversity of CreteHeraklion, CreteGreece
  4. 4.Department of Biological SciencesUniversity of CyprusNicosiaCyprus

Personalised recommendations