Advertisement

Archives of Dermatological Research

, Volume 298, Issue 4, pp 147–152 | Cite as

A comparative study of oxidant–antioxidant status in stable and active vitiligo patients

  • Dammak InesEmail author
  • Boudaya Sonia
  • Ben Mansour Riadh
  • El Gaied Amel
  • Marrekchi Slaheddine
  • Turki Hamida
  • Attia Hamadi
  • Hentati Basma
Hot Clinical Study

Abstract

The pathogenetic mechanisms in vitiligo have not been completely clarified. One of the major hypotheses in the pathogenesis of vitiligo is the oxidative stress hypothesis. The active or stable phase of vitiligo is defined on the basis of the progression or appearance of new lesions in the last 3 months and the absence of new lesions or their progression in the last 6 months, respectively. Eighteen patients with active vitiligo, 18 patients with stable vitiligo, and 40 controls were included in this study. We examined serum levels of malondialdehyde, selenium, vitamin E and A, and the erythrocyte activities of glutathione peroxidase, superoxide dismutase, and catalase. Our results revealed a significantly higher level of serum malondialdehyde, selenium in patients with active disease compared with the controls. Significant higher increase in erythrocytes superoxide dismutase activities was observed in active vitiligo group, erythrocyte glutathione peroxidase activity was decreased significantly in active disease, whereas erythrocyte catalase activity and plasma vitamin E and A levels were not different in vitiligo patients as compared with controls. Our study shows that oxidative stress is involved in the pathophysiology of both active and stable vitiligo but increased imbalance of antioxidants was observed in the blood of active vitiligo patients.

Keywords

Active vitiligo Stable vitiligo Oxidative stress 

Notes

Acknowledgement

We thank Dr Laporte François for his help in the serum selenium determination. (Dr. Laporte François. Laboratoire de Biologie du stress oxydant, UFR des Sciences Pharmaceutiques et Biologiques, Grenoble, France).

Prior to initiation of the study, each subject was informed about the purpose of the study and gives us an informed consent.

References

  1. 1.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedGoogle Scholar
  2. 2.
    Agrawal D, Shajil EM, Marfatia YS et al (2004) Study on the antioxidant status of vitiligo patients of different age groups in Borada. Pigment Cell Res 17:289–294PubMedCrossRefGoogle Scholar
  3. 3.
    Asada K, Takahashi M, Nagate M (1974) Assay and inhibitors of spinach superoxide dismutase. Agric Biol Chem 38:471–473Google Scholar
  4. 4.
    Beazley WD, Gaze D, Panske A et al (1991) Serum selenium levels and blood glutathione peroxidase activities in vitiligo. Br J Dermatol 141:301–303CrossRefGoogle Scholar
  5. 5.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. 6.
    Chakraborty DP, Roy S, Chakraborty AK (1996) Vitiligo, psoralen, and melanogenesis: some observations and understanding. Pigment Cell Res 141:301–303Google Scholar
  7. 7.
    Courtney B, Casp Jin-Xiong S, Wayne T et al (2002) Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res 15:62–66CrossRefGoogle Scholar
  8. 8.
    Dell’Anna ML, Maresca V, Brigandi S et al (2001) Mitochondrial impairment in peripheral blood mononuclear cells during the active phase of vitiligo. J Invest Dermatol 4:908–913CrossRefGoogle Scholar
  9. 9.
    De Luca C, Gradinetti M, Stancato A et al (1997) Involvement of epidermal oxidative stress in vitiligo and pityriasis versicolor. Pigment Cell Res 10:356Google Scholar
  10. 10.
    Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431PubMedCrossRefGoogle Scholar
  11. 11.
    Ducros V, Favier A (1992) Gas chromatographic–mass spectrometric method for the determination of selenium in biological samples. J Chromatogr 583:35–44PubMedCrossRefGoogle Scholar
  12. 12.
    Hann SK (2000) Autocytotoxic hypothesis for the destruction of melanocytes as the cause of vitiligo. In: Hann SK, Nordlund JJ (eds) Blackwell, Oxford, pp 137–141Google Scholar
  13. 13.
    Latha B, Babu M. (2001) The involvement of free radicals in burn injury: a review. Burns 27:309–317PubMedCrossRefGoogle Scholar
  14. 14.
    Lee BL, Chua SC, Ong HY et al (1992) High-performance liquid chromatographic method for routine determination of vitamins A and E and beta-carotene in plasma. J Chromatogr 1:41–47Google Scholar
  15. 15.
    Lemly AD (1997) Environmental implications of excessive selenium: a review. Biomed Environ Sci 10:512–522Google Scholar
  16. 16.
    Little C, O’Brien PJ (1968) An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem Biophys Res Commun 31:145–147PubMedCrossRefGoogle Scholar
  17. 17.
    Maresca V, Roccella M, Roccella F et al (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 109:310–313PubMedCrossRefGoogle Scholar
  18. 18.
    Mosher DB (1999) Hypomelanoses and hypermelanoses. In: Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI et al (eds) Fitzpatrick’s dermatology in general medicine. McGraw-Hill, New York, pp 945–1018Google Scholar
  19. 19.
    Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 82:563–567PubMedCrossRefGoogle Scholar
  20. 20.
    Ogg GS, Dumbar PR, Romero P et al (1998) High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med 188:1203–1208PubMedCrossRefGoogle Scholar
  21. 21.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169PubMedGoogle Scholar
  22. 22.
    Picardo M, Passi S, Morrone A et al (1994) Antioxidant status in the blood of patients with active vitiligo. Pigment Cell Res 2:110–115CrossRefGoogle Scholar
  23. 23.
    Ross AC (1999) Vitamin A. In: Shils ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease, pp 305–327Google Scholar
  24. 24.
    Schallreuter KU, Wood JM, Berger J (1991) Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 97:1081–1085PubMedCrossRefGoogle Scholar
  25. 25.
    Schallreuter KU, Wood JM, Pittelkow MR et al (1994) Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science 263:1444–1446PubMedCrossRefGoogle Scholar
  26. 26.
    Shaffrali F, Gawkrodger D (2000) Management of vitiligo. Clin Exp Dermatol 25:575–579PubMedCrossRefGoogle Scholar
  27. 27.
    Teherani DK, Nagy-vezekenyi K (1986) Neutron activation analysis of some trace elements (selenium, chromium, cobalt and nickel) in the blood of vitiligo patients. J Radioanal Nucl Chem 104:53–58CrossRefGoogle Scholar
  28. 28.
    Yildirim M, Baysal V, Inaloz HS et al (2003) The role of oxidants and antioxidants in generalized vitiligo. J Dermatol 30:104–108PubMedCrossRefGoogle Scholar
  29. 29.
    Yohn JJ, Norris DA, Yrastorza DG et al (1991) Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes, and melanocytes. J Invest Dermatol 97:405–409PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Dammak Ines
    • 1
    Email author
  • Boudaya Sonia
    • 2
  • Ben Mansour Riadh
    • 5
  • El Gaied Amel
    • 3
  • Marrekchi Slaheddine
    • 2
  • Turki Hamida
    • 2
  • Attia Hamadi
    • 6
  • Hentati Basma
    • 4
  1. 1.Institut supérieur de biotechnologie de SfaxSfaxTunisia
  2. 2.Servie de DermatologieCentre Hospitalo-UniversitaireSfaxTunisia
  3. 3.Technicienne à l’institut supérieur de biotechnologie de SfaxSfaxTunisia
  4. 4.Directrice de l’institut supérieur de biotechnologie de SfaxSfaxTunisia
  5. 5.Doctorant a l’institut superieur de Biotechnologie de SfaxSfaxTunisia
  6. 6.Chef de l’unité de recherche: Pathologies Humaines et stress oxydatif à l’institut superieur de Biotechnologie de SfaxSfaxTunisia

Personalised recommendations