Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur

  • Adone Baroni
  • Manuela Orlando
  • Giovanna Donnarumma
  • Pietro Farro
  • Maria Rosaria Iovene
  • Maria Antonietta TufanoEmail author
  • Elisabetta Buommino
Original Article


Toll-like receptors (TLRs) are crucial players in the innate immune response to microbial invaders. The lipophilic yeast Malassezia furfur has been implicated in the triggering of scalp lesions in psoriasis. The aim of the present study was to assess the role of TLRs in the defence against M. furfur infection. The expression of the myeloid differentiation factor 88 (MyD88) gene, which is involved in the signalling pathway of many TLRs, was also analysed. In addition, a possible correlation of antimicrobial peptides of the β-defensin family to TLRs was tested. Human keratinocytes infected with M. furfur and a variety of M. furfur-positive psoriatic skin biopsies were analysed by RT-PCR, for TLRs, MyD88, human β-defensin 2 (HBD-2), HBD-3 and interleukin-8 (IL-8) mRNA expression. When keratinocytes were infected with M. furfur, an up-regulation for TLR2, MyD88, HBD-2, HBD-3 and IL-8 mRNA was demonstrated, compared to the untreated cells. The same results were obtained when psoriatic skin biopsies were analysed. The M. furfur-induced increase in HBD-2 and IL-8 gene expression is inhibited by anti-TLR2 neutralising antibodies, suggesting that TLR2 is involved in the M. furfur-induced expression of these molecules. These findings suggest the importance of TLRs in skin protection against fungi and the importance of keratinocytes as a component of innate immunity.


Chemokine Defensins Keratinocytes and TLRs MyD88 M. furfur 



This study was supported in part by funds from Regione Campania Assessorato alla Ricerca Scientifica L. R. 28/03/2002.


  1. 1.
    Ashbee HR, Evans EG (2002) Immunology of diseases associated with Malassezia species. Clin Microbiol Rev 15: 21–57CrossRefPubMedGoogle Scholar
  2. 2.
    Baker BS, Ovigne JM, Powles AV, Corcoran S, Fry L (2003) Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 148: 670–679PubMedCrossRefGoogle Scholar
  3. 3.
    Birchler T, Seibl R, Buchner K, Loeriger S, Seger R, Hossle JP, Aguzzi A, Lauener RP (2001) Human Toll-like receptor 2 mediates induction of the antimicrobial peptide human beta defensin-2 in response to bacterial lipoprotein. Eur J Immunol 31: 3131–3137PubMedCrossRefGoogle Scholar
  4. 4.
    Bos JD (1997) The skin as an organ of immunity. Clin Exp Immnunol 107: 3–5Google Scholar
  5. 5.
    Bowcock AM, Shannon W, Du F, Duncan J, Cao K, Aftergut K, Cattier J, Fernandez-Vina MA, Menter A (2001) Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum Mol Genet 10: 1793–1805PubMedCrossRefGoogle Scholar
  6. 6.
    Boyce ST, Ham RG (1983) Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol 81: 33–40PubMedCrossRefGoogle Scholar
  7. 7.
    Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptor. Science 285: 732–736PubMedCrossRefGoogle Scholar
  8. 8.
    Curry JL, Qin JZ, Bonish B, Carrick R, Bacon P, Panella J, Robinson J, Nickoloff BJ (2003) Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 127: 178–186PubMedGoogle Scholar
  9. 9.
    Donnarumma G, Paoletti I, Buommino E, Orlando M, Tufano MA, Baroni A (2004) Malassezia furfur induces the expression of βdefensin-2 in human keratinocytes in a protein kinase c-dependent manner. Arch Dermatol Res 295: 474–481PubMedCrossRefGoogle Scholar
  10. 10.
    Doring HF (1985) Therapy and etiology of sebopsoriasis. Z Hautkr 60: 1940–1942, 1947–1950PubMedGoogle Scholar
  11. 11.
    Doyle S, Vaidya S, O’ Connel R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G (2002) IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17: 251–263PubMedCrossRefGoogle Scholar
  12. 12.
    Dunne A, O’ Neill LA (2003) The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 3: 171Google Scholar
  13. 13.
    Elewski B (1990) Does Pityrosporum ovale have a role in psoriasis? Arch Dermatol 126: 1111–1112PubMedCrossRefGoogle Scholar
  14. 14.
    Erridge C, Pridmore A, Eley A, Stewart J, Poxton IR (2004) Lipopolysaccharides of Bacteroides fragilis,Clammydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2. J Med Microbiol 53: 735–740PubMedCrossRefGoogle Scholar
  15. 15.
    Faergemann J (1992) Pityrosporum infections. In: Elewski BE (ed) Cutaneous fungal infections. Igaku-Shoin, New York, NY, pp 69–83Google Scholar
  16. 16.
    Harder J, Bartels J, Christophers E, Schrider JM (2001) Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276: 5707–5713PubMedCrossRefGoogle Scholar
  17. 17.
    Harder J, Schroder JM (2005) Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol 77: 476–486CrossRefPubMedGoogle Scholar
  18. 18.
    Henseler T (1995) Mucocutaneous candidiasis in patients with skin disease. Mycoses 38: 7–13PubMedGoogle Scholar
  19. 19.
    Hertz CJ, Wu Q, Porter EM, Zhang YJ, Weismuller KH, Godowski PJ, Granz T, Randell SM, Modlin RL (2003) Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta-defensin-2. J Immunol 171: 6820–6826PubMedGoogle Scholar
  20. 20.
    Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J Immunol 162: 3749–3752PubMedGoogle Scholar
  21. 21.
    Huttner KM, Bevins CL (1999) Antimicrobial peptides as mediators of epithelial host defense. Pediatr Res 45: 785–794PubMedCrossRefGoogle Scholar
  22. 22.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216CrossRefPubMedGoogle Scholar
  23. 23.
    Jia HP, Schutte BC, Schudy A, Linzmeier R, Guthmiller JM, Johnson GK, Tack BF, Mitros JP, Rosenthal A, Ganz T, Mc Cray PB Jr (2001) Discovery of new human beta-defensins using a genomics based approach. Gene 263: 211–218CrossRefPubMedGoogle Scholar
  24. 24.
    Kanda N, Tani K, Enomoto U, Nakai K, Watanabe S (2002) The skin fungus-induced Th1- and Th2-related cytokine, chemochine and prostaglandin E2 production in peripheral blood mononuclear cells from patients with atopic dermatitis and psoriasis vulgaris. Clin Exp Allergy 32: 1243–1250CrossRefPubMedGoogle Scholar
  25. 25.
    Kopp EB, Medzhitov R (1999) The Toll receptor family and control of innate immunity. Curr Opin Immunol 11: 13–18CrossRefPubMedGoogle Scholar
  26. 26.
    Lehner MD, Morath S, Michelsen KS, Schumann RR, Hartung T (2001) Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-like receptors independent of paracrine mediators. J Immunol 166: 5161–5167PubMedGoogle Scholar
  27. 27.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983CrossRefPubMedGoogle Scholar
  28. 28.
    Licn E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Findberg RW, Carrol JD, Espevik T, Ingalls RR, Radolf JD, Golenbock DT (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274: 33419–33425CrossRefPubMedGoogle Scholar
  29. 29.
    Lober CW, Belew PW, Rosenberg EW, Bale G (1982) Patch tests with killed sonicated microflora in patients with psoriasis. Arch Dermatol 118: 322–325CrossRefPubMedGoogle Scholar
  30. 30.
    Lui L, Wang L, Jia HP, Zhao C, Heng HH, Shutte BC, Mc Cray PB Jr, Ganz T (1998)Structure and mapping of the human β-defensin HBD-2 gene and its expression at sites of inflammation. Gene 222: 237–244CrossRefPubMedGoogle Scholar
  31. 31.
    Marr KA, Balajee SA, Hawnt R, Ozinsky A, Pham U, Akira S, Aderem A, Liles WC (2003) Differential role of Myd88 in macrophage-mediated responses to opportunistic fungal pathogens. Infect Immun 71: 5280–5286CrossRefPubMedGoogle Scholar
  32. 32.
    McGettrick AF, O’Neill LAJ (2004) The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol Immunol 41: 577–582CrossRefPubMedGoogle Scholar
  33. 33.
    Muroi M, Ohnishi T, Azumi-Mayuzumi S, Tanamoto T (2003) Lipopolysaccharide-mimetic activities of a Toll-like receptor 2-stimulatory substance(s) in enterobacterial lipopolysaccharide preparations. Infect Immun 71: 3221–3226CrossRefPubMedGoogle Scholar
  34. 34.
    Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ (2002) The role of toll-like receptor TLR-2 and TLR-4 in the host defense against disseminated candidiasis. J Infect Dis 185: 1483–1489CrossRefPubMedGoogle Scholar
  35. 35.
    Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 97: 13766–13771CrossRefPubMedGoogle Scholar
  36. 36.
    Perez-Lorenzo R, Zambrano-Zargoza JF, Moo-Castillo K, Luna-Vazquez DL, Ruiz-Guillermo L, Garcia-Latorre E (2003) IgG class antibodies to heat shock-induced streptococcal antigens in psoriatic patients. Int J Dermatol 42: 110–115CrossRefPubMedGoogle Scholar
  37. 37.
    Pivarcsi A, Bodai L, Réthi B, Kenderessy-Szabo A, Koreck A, Szell M, Beer Z, Beta-Csorgoo Z, Magocsi M, Rajnavolgyi E, Dobozy A, Kemeny L (2003) Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15: 721–730CrossRefPubMedGoogle Scholar
  38. 38.
    Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95: 588–593CrossRefPubMedGoogle Scholar
  39. 39.
    Schibli DJ, Hunter HN, Aeyev V, Starner TD, Wience KJM, Mc Cray PB Jr, Tack BF, Vogel HJ (2002) The solution structures of the human β-defensin lead to a better understanding of the potent bactericidal activity of HBD-3 against Staphilococcus aureus. J Biol Chem 277: 8279–8289CrossRefPubMedGoogle Scholar
  40. 40.
    Scott MG, Hancock RE (2000) Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol 20: 407–431PubMedGoogle Scholar
  41. 41.
    Svendsen ML, Daneels G, Geysen J, Binderup L, Kragballe K (1997) Proliferation and differentation of cultured human keratinocites is modulated by 1,25(OH)2D3 and synthetic vitamin D3 analogues in a cell density-, calcium- and serum-dependent manner. Pharmacol Toxicol 80: 49–56PubMedGoogle Scholar
  42. 42.
    Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takeda H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11: 443–451CrossRefPubMedGoogle Scholar
  43. 43.
    Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811–815CrossRefPubMedGoogle Scholar
  44. 44.
    Underhill DM, Ozinsky A, Smith KD, Aderem A (1999) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signalling in macrophages. Proc Natl Acad Sci USA 96: 14459–14463CrossRefPubMedGoogle Scholar
  45. 45.
    Waldman A, Gilhar A, Duek L, Berdicevski I (2001) Incidence of Candida in psoriasis a study on the fungal flora of psoriatic patients. Mycoses 44: 77–81CrossRefPubMedGoogle Scholar
  46. 46.
    Wang JE, Warris A, Ellingsen EA, Jorgensen PF, Flo TH, Espevik T, Solberg R, Verweij PE, Aasen AO(2001) Involvment of CD14 and Toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 69: 2402–2406CrossRefPubMedGoogle Scholar
  47. 47.
    Weinberg A, Krisanaprakornkit S, Dale BA (1998) Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 9: 399–414PubMedCrossRefGoogle Scholar
  48. 48.
    Yang BR, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ (1998) Toll-like receptor-2 mediated lipopolysaccharide-induced cellular signaling. Nature 395: 284–288CrossRefPubMedGoogle Scholar
  49. 49.
    Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golembock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163: 1–5PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Adone Baroni
    • 1
  • Manuela Orlando
    • 2
  • Giovanna Donnarumma
    • 2
  • Pietro Farro
    • 1
  • Maria Rosaria Iovene
    • 2
  • Maria Antonietta Tufano
    • 2
    Email author
  • Elisabetta Buommino
    • 2
  1. 1.Department of DermatologyFaculty of Medicine and Surgery, Second University of NaplesNaplesItaly
  2. 2.Department of Experimental Medicine, Microbiology and Clinical Microbiology SectionSecond University of NaplesNaplesItaly

Personalised recommendations