Advertisement

Sagittal profile has a significant impact on the explantability of well-fixed cemented stems in revision knee arthroplasty: a biomechanical comparison study of five established knee implant models

  • Alexander MaslarisEmail author
  • Frank Layher
  • Matthias Bungartz
  • Timo Zippelius
  • Emmanouil Liodakis
  • Olaf Brinkmann
  • Georg Matziolis
Knee Revision Surgery
  • 32 Downloads

Abstract

Background

Easy revisability is gaining increasingly in importance. The removal of well-fixed cemented stems is very demanding and is often associated with increased operative morbidity. Implant design may be here a decisive impact factor, and the best way to ascertain it is experimentally. Aim of this study is to assess different cemented stems of established knee revision implants in regard to their removal capability.

Methods

Based on their sagittal profile, five stem extensions from known manufacturers were divided in conical, conical–cylindrical and cylindrical designs. The pedicles were also characterized in respect to their cross section, diameter and surface roughness. The cemented stems were dismounted six times each in a reproducible biomechanical setup. The explantation energy required was determined and statistical analyzed.

Results

The conical shaft needed significantly the slightest explantation energy with 19.2 joules (p = 0.004). There was a strong negative linear correlation between conicity proportion and explantation energy of the cemented stems (R2 = 0.983). The removal of the three purely cylindrical shafts—regardless of their differences in diameter, cross-sectional design and surface– was the most demanding (98.3, 105, and 116.7 joules) with only secondary differences between them.

Conclusion

The longitudinal stem profile may have a primary impact on the explantability of well-fixed cemented shafts with conical designs showing superiority. Cross-sectional profile and surface roughness had here a less decisive influence on the explantability. Surgeons can choose proper implants and removal techniques depending on potential implant-associated revision risks and re-revisions to be expected.

Keywords

Total knee arthroplasty Revision Explantation Implant removal Cemented stems Stem design Conical stems Stem conicity Complications 

Notes

Acknowledgements

The authors have no acknowledgements to express.

Funding

There is no funding source.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Rodricks D, Patil S, Pulido P, Colwell CJ (2007) Press-fit condylar design total knee arthroplasty. Fourteen to seventeen-year follow-up. J Bone Jt Surg Am 89:89–95CrossRefGoogle Scholar
  2. 2.
    Boy O, Hahn S, Kociemba E, BQS-Fachgruppe Orthopädie und Unfallchirurgie (2009) BQS Bundesgeschäftsstelle für Qualitätssicherung. Qualitätsreport 2008. Knie-Endoprothesenwechsel und -komponentenwechselGoogle Scholar
  3. 3.
    Boy O, Hahn S, Kociemba E, BQS-Fachgruppe Orthopädie und Unfallchirurgie (2009) BQS Bundesgeschäftsstelle für Qualitätssicherung. Qualitätsreport 2008. Knie-Totalendoprothesen- ErstimplantationGoogle Scholar
  4. 4.
    Grimberg A, Jansson V, Liebs T et al (2015) Endoprothesenregister Deutschland (EPRD). Jahresbericht 2015. BerlinGoogle Scholar
  5. 5.
    Kurtz S, Ong K, Lau E et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Jt Surg Ser A 89:780–785.  https://doi.org/10.2106/JBJS.F.00222 Google Scholar
  6. 6.
    Kurtz SM, Lau E, Ong K et al (2009) Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res 467:2606–2612.  https://doi.org/10.1007/s11999-009-0834-6 CrossRefGoogle Scholar
  7. 7.
    Kurtz SM, Ong KL, Schmier J et al (2009) Primary and revision arthroplasty surgery caseloads in the United States from 1990 to 2004. J Arthroplasty 24:195–203.  https://doi.org/10.1016/j.arth.2007.11.015 CrossRefGoogle Scholar
  8. 8.
    Cherian JJ, Bhave A, Harwin SF, Mont MA (2016) Outcomes and aseptic survivorship of revision total knee arthroplasty. Am J Orthop (Belle Mead NJ) 45:79–85Google Scholar
  9. 9.
    Alden KJ, Duncan WH, Trousdale RT et al (2010) Intraoperative fracture during primary total knee arthroplasty. Clin Orthop Relat Res 468:90–95.  https://doi.org/10.1007/s11999-009-0876-9 CrossRefGoogle Scholar
  10. 10.
    Elia EA, Lotke PA (1991) Results of revision total knee arthroplasty associated with significant bone loss. Clin Orthop Relat Res 271:114–121Google Scholar
  11. 11.
    Mortazavi SMJ, Molligan J, Austin MS et al (2011) Failure following revision total knee arthroplasty: infection is the major cause. Int Orthop 35:1157–1164.  https://doi.org/10.1007/s00264-010-1134-1 CrossRefGoogle Scholar
  12. 12.
    Pinaroli A, Piedade SR, Servien E, Neyret P (2009) Intraoperative fractures and ligament tears during total knee arthroplasty. A 1795 posterostabilized TKA continuous series. Orthop Traumatol Surg Res 95:183–189.  https://doi.org/10.1016/j.otsr.2008.04.002 CrossRefGoogle Scholar
  13. 13.
    Sassoon AA, Nelms NJ, Trousdale RT (2014) Intraoperative fracture during staged total knee reimplantation in the treatment of periprosthetic infection. J Arthroplasty 29:1435–1438.  https://doi.org/10.1016/j.arth.2014.01.021 CrossRefGoogle Scholar
  14. 14.
    Sassoon AA, Wyles CC, Norambuena Morales GA et al (2014) Intraoperative fracture during aseptic revision total knee arthroplasty. J Arthroplasty 29:2187–2191.  https://doi.org/10.1016/j.arth.2014.05.009 CrossRefGoogle Scholar
  15. 15.
    Paprosky WG, Weeden SH, Bowling JW (2001) Component removal in revision total hip arthroplasty. Clin Orthop Relat Res 393:181–193CrossRefGoogle Scholar
  16. 16.
    Boddapati V, Fu MC, Mayman DJ et al (2017) Revision total knee arthroplasty for periprosthetic joint infection is associated with increased postoperative morbidity and mortality relative to noninfectious revisions. J Arthroplasty 33:521–526.  https://doi.org/10.1016/j.arth.2017.09.021 CrossRefGoogle Scholar
  17. 17.
    Aggarwal VK, Goyal N, Deirmengian G et al (2014) Revision total knee arthroplasty in the young patient: is there trouble on the horizon? J Bone Jt Surgery-American Vol 96:536–542.  https://doi.org/10.2106/JBJS.M.00131 CrossRefGoogle Scholar
  18. 18.
    Bryan RS, Rand JA (1982) Revision total knee arthroplasty. Clin Orthop Relat Res 170:116–122Google Scholar
  19. 19.
    Lindberg-Larsen M, Jørgensen CC, Bagger J et al (2016) Revision of infected knee arthroplasties in Denmark. Acta Orthop 87:333–338.  https://doi.org/10.3109/17453674.2016.1148453 CrossRefGoogle Scholar
  20. 20.
    Rand JA, Bryan RS (1982) Revision after total knee arthroplasty. Orthop Clin North Am 13:201–212Google Scholar
  21. 21.
    Yu S, Bolz N, Buza J et al (2017) Re-revision total knee arthroplasty: epidemiology and factors associated with outcomes. Orthop Proc 99–B:117–117Google Scholar
  22. 22.
    El-Zayat BF, Heyse TJ, Fanciullacci N et al (2016) Fixation techniques and stem dimensions in hinged total knee arthroplasty: a finite element study. Arch Orthop Trauma Surg 136:1741–1752.  https://doi.org/10.1007/s00402-016-2571-0 CrossRefGoogle Scholar
  23. 23.
    Completo A, Simões JA, Fonseca F, Oliveira M (2008) The influence of different tibial stem designs in load sharing and stability at the cement-bone interface in revision TKA. Knee 15:227–232.  https://doi.org/10.1016/j.knee.2008.01.008 CrossRefGoogle Scholar
  24. 24.
    Jazrawi LM, Bai B, Kummer FJ et al (2001) The effect of stem modularity and mode of fixation on tibial component stability in revision total knee arthroplasty. J Arthroplasty 16:759–767.  https://doi.org/10.1054/arth.2001.25507 CrossRefGoogle Scholar
  25. 25.
    Luring C, Perlick L, Trepte C et al (2006) Micromotion in cemented rotating platform total knee arthroplasty: Cemented tibial stem versus hybrid fixation. Arch Orthop Trauma Surg 126:45–48.  https://doi.org/10.1007/s00402-005-0082-5 CrossRefGoogle Scholar
  26. 26.
    Stern SH, Wills RD, Gilbert JL (1997) The effect of tibial stem design on component micromotion in knee arthroplasty. Clin Orthop Relat Res 345:44–52CrossRefGoogle Scholar
  27. 27.
    van Loon CJ, Kyriazopoulos A, Verdonschot N et al (2000) The role of femoral stem extension in total knee arthroplasty. Clin Orthop Relat Res 378:282–289CrossRefGoogle Scholar
  28. 28.
    Bini SA, Chan PH, Inacio MCSS et al (2016) Antibiotic cement was associated with half the risk of re-revision in 1154 aseptic revision total knee arthroplasties. Acta Orthop 87:55–59.  https://doi.org/10.3109/17453674.2015.1103568 CrossRefGoogle Scholar
  29. 29.
    Fehring TK, Odum S, Olekson C et al (2003) Stem fixation in revision total knee arthroplasty: a comparative analysis. Clin Orthop Relat Res 416:217–224.  https://doi.org/10.1097/01.blo.0000093032.56370.4b CrossRefGoogle Scholar
  30. 30.
    Mabry TM, Vessely MB, Schleck CD et al (2007) Revision total knee arthroplasty with modular cemented stems: long-term follow-up. J Arthroplasty 22:100–105.  https://doi.org/10.1016/j.arth.2007.03.025 CrossRefGoogle Scholar
  31. 31.
    Murray PB, Rand JA, Hanssen AD (1994) Cemented long-stem revision total knee arthroplasty. Clin Orthop Relat Res 309:116–123Google Scholar
  32. 32.
    Shannon BD, Klassen JF, Rand JA et al (2003) Revision total knee arthroplasty with cemented components and uncemented intramedullary stems. J Arthroplasty 18:27–32.  https://doi.org/10.1016/S0883-5403(03)00301-2 CrossRefGoogle Scholar
  33. 33.
    Vince KG, Long W (1995) Revision knee arthroplasty. The limits of press fit medullary fixation. Clin Orthop Relat Res 317:172–177Google Scholar
  34. 34.
    Whaley AL, Trousdale RT, Rand JA, Hanssen AD (2003) Cemented long-stem revision total knee arthroplasty. J Arthroplasty 18:592–599.  https://doi.org/10.1016/S0883-5403(03)00200-6 CrossRefGoogle Scholar
  35. 35.
    Completo A, Simões JA, Fonseca F (2009) Revision total knee arthroplasty: the influence of femoral stems in load sharing and stability. Knee 16:275–279.  https://doi.org/10.1016/j.knee.2008.12.008 CrossRefGoogle Scholar
  36. 36.
    Kim Y, Kim J (2009) Revision total knee arthroplasty with use of a constrained condylar knee prothesis. J Bone Jt Surg 91:1440–1447.  https://doi.org/10.2106/JBJS.H.00425 CrossRefGoogle Scholar
  37. 37.
    Mow C, Wiedel J (1994) Noncemented revision total knee arthroplasty. Clin Orthop Relat Res 309:110–115Google Scholar
  38. 38.
    Peters CL, Erickson JA, Gililland JM (2009) Clinical and radiographic results of 184 consecutive revision total knee arthroplasties placed with modular cementless stems. J Arthroplasty 24:48–53.  https://doi.org/10.1016/j.arth.2009.04.033 CrossRefGoogle Scholar
  39. 39.
    Whiteside LA (2006) Cementless fixation in revision total knee arthroplasty. Clin Orthop Relat Res 446:140–148.  https://doi.org/10.1097/01.blo.0000218724.29344.89 CrossRefGoogle Scholar
  40. 40.
    Wood GC, Naudie DDR, MacDonald SJ et al (2009) Results of press-fit stems in revision knee Arthroplasties. Clin Orthop Relat Res 467:810–817.  https://doi.org/10.1007/s11999-008-0621-9 CrossRefGoogle Scholar
  41. 41.
    Maslaris A, Layher F, Brinkmann O et al (2018) Cemented conical stems can be removed more easily than cylindrical stems, regardless of cone angle in revision knee arthroplasty. Arch Orthop Trauma Surg 138:1747–1754.  https://doi.org/10.1007/s00402-018-3053-3 CrossRefGoogle Scholar
  42. 42.
    Beksac B, Taveras NA, Valle AG, Salvati EA (2006) Surface finish mechanics explain different clinical survivorship of cemented femoral stems for total hip arthroplasty. J Long Term Eff Med Implants 16:407–422CrossRefGoogle Scholar
  43. 43.
    Crowninshield RD, Jennings JD, Laurent ML, Maloney WJ (1998) Cemented femoral component surface finish mechanics. Clin Orthop Relat Res 355:90–102.  https://doi.org/10.1097/00003086-199810000-00010 CrossRefGoogle Scholar
  44. 44.
    Kutzner I, Heinlein B, Graichen F et al (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43:2164–2173.  https://doi.org/10.1016/j.jbiomech.2010.03.046 CrossRefGoogle Scholar
  45. 45.
    Heinlein B, Kutzner I, Graichen F et al (2009) ESB clinical biomechanics award 2008: complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6–10 months. Clin Biomech 24:315–326.  https://doi.org/10.1016/j.clinbiomech.2009.01.011 CrossRefGoogle Scholar
  46. 46.
    Mason JB, Fehring TK (2006) Removing well-fixed total knee arthroplasty implants. Clin Orthop Relat Res 446:76–82.  https://doi.org/10.1097/01.blo.0000214413.06464.ce CrossRefGoogle Scholar
  47. 47.
    Masri BA, Mitchell PA, Duncan CP (2005) Removal of solidly fixed implants during revision hip and knee arthroplasty. J Am Acad Orthop Surg 13:18–27.  https://doi.org/10.5435/00124635-200501000-00004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alexander Maslaris
    • 1
    Email author
  • Frank Layher
    • 2
  • Matthias Bungartz
    • 1
  • Timo Zippelius
    • 1
  • Emmanouil Liodakis
    • 3
  • Olaf Brinkmann
    • 1
  • Georg Matziolis
    • 1
  1. 1.Department of OrthopedicsJena University HospitalEisenbergGermany
  2. 2.Department of Orthopedics, Laboratory of BiomechanicsJena University HospitalEisenbergGermany
  3. 3.Trauma DepartmentHannover Medical SchoolHannoverGermany

Personalised recommendations