Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 138, Issue 9, pp 1293–1303 | Cite as

Outcome of kinematic alignment using patient-specific instrumentation versus mechanical alignment in TKA: a meta-analysis and subgroup analysis of randomised trials

  • J. T. K. Woon
  • I. S. L. Zeng
  • T. Calliess
  • H. Windhagen
  • M. Ettinger
  • H. B. Waterson
  • A. D. Toms
  • S. W. Young
Knee Arthroplasty
  • 215 Downloads

Abstract

Introduction

Kinematic alignment (KA) in total knee arthroplasty (TKA) matches component position to the pre-arthritic anatomy of an individual patient, with the aim of improving functional outcomes. Recent randomised controlled trials (RCTs) comparing KA to traditional neutral mechanical alignment (MA) have been mixed. This collaborative study combined raw data from RCTs, aiming to compare functional outcomes between KA using patient-specific instrumentation (PSI) and MA, and whether any patient subgroups may benefit more from KA technique.

Materials and methods

A literature search in PubMed, EMBASE and Cochrane databases identified four randomised controlled trials comparing patients undergoing TKA using PSI-KA and MA. Unpublished data including Western Ontario McMaster Universities Arthritis Index (WOMAC) and Knee Society Score (KSS) were obtained from study authors. Meta-analysis compared MA to KA change (post-op minus pre-op) scores. Subgroup-analysis on KA patients looked for subgroups more likely to benefit from KA and the impact of PSI accuracy.

Results

Meta-analyses of change scores in 229 KA patients versus 229 MA patients were no different from WOMAC (mean difference 3.4; 95% confidence interval − 0.5 to 7.3), KSS function (1.3, − 3.9 to 6.4) or KSS combined (7.2, − 0.8 to 15.2). A small advantage was seen for KSS pain in the KA group (3.6, 95% CI 0.2–7.1). Subgroup-analysis showed no difference between varus, valgus and neutral pre-operative alignment groups, and those who did and did not achieve KA plans. Pain-free patients at 1-year were more likely to achieve KA plans.

Conclusion

Patient-reported outcome scores following TKA using PSI-KA are similar to MA. No identifiable subgroups benefited more from KA, and long-term results remain unknown. Inaccuracy of the PSI system used in KA patients could potentially affect outcome.

Keywords

Total knee arthroplasty Kinematic alignment Mechanical alignment ShapeMatch Patient-specific instrumentation 

Notes

Funding

No external source of funding was used for this study.

Supplementary material

402_2018_2988_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 KB)

References

  1. 1.
    Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, Faris GW, Davis KE (2004) Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res (428):26–34CrossRefGoogle Scholar
  2. 2.
    Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Jt Surg Br 73(5):709–714CrossRefGoogle Scholar
  3. 3.
    Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Jt Surg Am 59(1):77–79CrossRefGoogle Scholar
  4. 4.
    Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res (299):153–156Google Scholar
  5. 5.
    Tew M, Waugh W (1985) Tibiofemoral alignment and the results of knee replacement. J Bone Jt Surg Br 67(4):551–556CrossRefGoogle Scholar
  6. 6.
    Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470(1):45–53.  https://doi.org/10.1007/s11999-011-1936-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Dossett HG, Estrada NA, Swartz GJ, LeFevre GW, Kwasman BG (2014) A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Jt J 96-b(7):907–913.  https://doi.org/10.1302/0301-620x.96b7.32812 CrossRefGoogle Scholar
  8. 8.
    Dossett HG, Swartz GJ, Estrada NA, LeFevre GW, Kwasman BG (2012) Kinematically versus mechanically aligned total knee arthroplasty. Orthopedics 35(2):e160–e169.  https://doi.org/10.3928/01477447-20120123-04 PubMedCrossRefGoogle Scholar
  9. 9.
    Howell SM, Papadopoulos S, Kuznik K, Ghaly LR, Hull ML (2015) Does varus alignment adversely affect implant survival and function six years after kinematically aligned total knee arthroplasty? Int Orthop 39(11):2117–2124.  https://doi.org/10.1007/s00264-015-2743-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Calliess T, Bauer K, Stukenborg-Colsman C, Windhagen H, Budde S, Ettinger M (2016) PSI kinematic versus non-PSI mechanical alignment in total knee arthroplasty: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc  https://doi.org/10.1007/s00167-016-4136-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Waterson HB, Clement ND, Eyres KS, Mandalia VI, Toms AD (2016) The early outcome of kinematic versus mechanical alignment in total knee arthroplasty: a prospective randomised control trial. Bone Jt J 98-b(10):1360–1368.  https://doi.org/10.1302/0301-620x.98b10.36862 CrossRefGoogle Scholar
  12. 12.
    Young SW, Walker ML, Bayan A, Briant-Evans T, Pavlou P, Farrington B (2017) The Chitranjan S. Ranawat award: no difference in 2-year functional outcomes using kinematic versus mechanical alignment in TKA: a randomized controlled clinical trial. Clin Orthop Relat Res 475(1):9–20.  https://doi.org/10.1007/s11999-016-4844-x CrossRefPubMedGoogle Scholar
  13. 13.
    Glanville JM, Duffy S, McCool R, Varley D (2014) Searching ClinicalTrials.gov and the International Clinical Trials Registry platform to inform systematic reviews: what are the optimal search approaches? J Med Libr Assoc 102(3):177–183.  https://doi.org/10.3163/1536-5050.102.3.007 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700.  https://doi.org/10.1136/bmj.b2700 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Armijo-Olivo S, Stiles CR, Hagen NA, Biondo PD, Cummings GG (2012) Assessment of study quality for systematic reviews: a comparison of the Cochrane Collaboration risk of bias tool and the Effective Public Health Practice Project quality assessment tool: methodological research. J Eval Clin Pract 18(1):12–18.  https://doi.org/10.1111/j.1365-2753.2010.01516.x CrossRefPubMedGoogle Scholar
  16. 16.
    Chung JH, Kang DH, Jo JK, Lee SW (2012) Assessing the quality of randomized controlled trials published in the Journal of Korean Medical Science from 1986 to 2011. J Korean Med Sci 27(9):973–980.  https://doi.org/10.3346/jkms.2012.27.9.973 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, Cochrane Bias Methods G, Cochrane Statistical Methods G (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928.  https://doi.org/10.1136/bmj.d5928 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bonett DG (2008) Confidence intervals for standardized linear contrasts of means. Psychol Methods 13(2):99–109.  https://doi.org/10.1037/1082-989X.13.2.99 CrossRefPubMedGoogle Scholar
  20. 20.
    Bonett DG (2009) Meta-analytic interval estimation for standardized and unstandardized mean differences. Psychol Methods 14(3):225–238.  https://doi.org/10.1037/a0016619 CrossRefPubMedGoogle Scholar
  21. 21.
    Howell SM, Hodapp EE, Vernace JV, Hull ML, Meade TD (2013) Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients. Knee Surg Sports Traumatol Arthrosc 21(10):2281–2287.  https://doi.org/10.1007/s00167-012-2220-2 CrossRefPubMedGoogle Scholar
  22. 22.
    Howell SM, Howell SJ, Kuznik KT, Cohen J, Hull ML (2013) Does a kinematically aligned total knee arthroplasty restore function without failure regardless of alignment category? Clin Orthop Relat Res 471(3):1000–1007.  https://doi.org/10.1007/s11999-012-2613-z CrossRefPubMedGoogle Scholar
  23. 23.
    Howell SM, Papadopoulos S, Kuznik KT, Hull ML (2013) Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg Sports Traumatol Arthrosc 21(10):2271–2280.  https://doi.org/10.1007/s00167-013-2621-x CrossRefPubMedGoogle Scholar
  24. 24.
    Hutt J, Masse V, Lavigne M, Vendittoli PA (2016) Functional joint line obliquity after kinematic total knee arthroplasty. Int Orthop 40(1):29–34.  https://doi.org/10.1007/s00264-015-2733-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Hutt JR, LeBlanc MA, Masse V, Lavigne M, Vendittoli PA (2016) Kinematic TKA using navigation: Surgical technique and initial results. Orthop Traumatol Surg Res 102(1):99–104.  https://doi.org/10.1016/j.otsr.2015.11.010 CrossRefPubMedGoogle Scholar
  26. 26.
    Nam D, Lin KM, Howell SM, Hull ML (2014) Femoral bone and cartilage wear is predictable at 0 degrees and 90 degrees in the osteoarthritic knee treated with total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):2975–2981.  https://doi.org/10.1007/s00167-014-3080-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Park A, Duncan ST, Nunley RM, Keeney JA, Barrack RL, Nam D (2014) Relationship of the posterior femoral axis of the “kinematically aligned” total knee arthroplasty to the posterior condylar, transepicondylar, and anteroposterior femoral axes. Knee 21(6):1120–1123.  https://doi.org/10.1016/j.knee.2014.07.025 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Winemaker M, Zabtia N, Qutob M, Beer JD, Petruccelli D, Woolfrey M (2015) Shape-matching: “measure with a micrometer, mark with a chalk-line, and cut with an axe” still holds true with modern 3D-templating. Curr Orthop Pract 26(2):130–135CrossRefGoogle Scholar
  29. 29.
    Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL (2012) Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res 470(3):895–902.  https://doi.org/10.1007/s11999-011-2222-2 CrossRefPubMedGoogle Scholar
  30. 30.
    Toliopoulos P, LeBlanc MA, Hutt J, Lavigne M, Desmeules F, Vendittoli PA (2016) Anatomic versus mechanically aligned total knee arthroplasty for unicompartmental knee arthroplasty revision. Open Orthop J 10:357–363.  https://doi.org/10.2174/1874325001610010357 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Belvedere C, Tamarri S, Ensini A, Caravaggi P, Ortolani M, Lullini G, Berti L, Leardini A (2015) Better joint motion and muscle activity are achieved using kinematic alignment than neutral mechanical alignment in total knee replacement. Gait Posture 42:S19–S20.  https://doi.org/10.1016/j.gaitpost.2015.07.043 CrossRefGoogle Scholar
  32. 32.
    Ji HM, Han J, Jin DS, Seo H, Won YY (2016) Kinematically aligned TKA can align knee joint line to horizontal. Knee Surg Sports Traumatol Arthrosc 24(8):2436–2441.  https://doi.org/10.1007/s00167-016-3995-3 CrossRefPubMedGoogle Scholar
  33. 33.
    Whitehouse SL, Lingard EA, Katz JN, Learmonth ID (2003) Development and testing of a reduced WOMAC function scale. J Bone Jt Surg Br 85(5):706–711CrossRefGoogle Scholar
  34. 34.
    Song EK, Agrawal PR, Kim SK, Seo HY, Seon JK (2016) A randomized controlled clinical and radiological trial about outcomes of navigation-assisted TKA compared to conventional TKA: long-term follow-up. Knee Surg Sports Traumatol Arthrosc 24(11):3381–3386.  https://doi.org/10.1007/s00167-016-3996-2 CrossRefPubMedGoogle Scholar
  35. 35.
    Williams DP, Blakey CM, Hadfield SG, Murray DW, Price AJ, Field RE (2013) Long-term trends in the Oxford knee score following total knee replacement. Bone Jt J 95-B(1):45–51.  https://doi.org/10.1302/0301-620X.95B1.28573 CrossRefGoogle Scholar
  36. 36.
    Jacobs CA, Christensen CP, Karthikeyan T (2014) Patient and intraoperative factors influencing satisfaction two to five years after primary total knee arthroplasty. J Arthroplast 29(8):1576–1579.  https://doi.org/10.1016/j.arth.2014.03.022 CrossRefGoogle Scholar
  37. 37.
    Nam D, Nunley RM, Barrack RL (2014) Patient dissatisfaction following total knee replacement: a growing concern? Bone Jt J 96-B(11 Suppl A):96–100.  https://doi.org/10.1302/0301-620X.96B11.34152 CrossRefGoogle Scholar
  38. 38.
    Planckaert C, Larose G, Ranger P, Lacelle M, Fuentes A, Hagemeister N (2018) Total knee arthroplasty with unexplained pain: new insights from kinematics. Arch Orthop Trauma Surg 138(4):553–561.  https://doi.org/10.1007/s00402-018-2873-5 CrossRefPubMedGoogle Scholar
  39. 39.
    Klatt BA, Goyal N, Austin MS, Hozack WJ (2008) Custom-fit total knee arthroplasty (OtisKnee) results in malalignment. J Arthroplast 23(1):26–29.  https://doi.org/10.1016/j.arth.2007.10.001 CrossRefGoogle Scholar
  40. 40.
    Arima J, Whiteside LA, McCarthy DS, White SE (1995) Femoral rotational alignment, based on the anteroposterior axis, in total knee arthroplasty in a valgus knee. A technical note. J Bone Jt Surg Am 77(9):1331–1334CrossRefGoogle Scholar
  41. 41.
    Nogler M, Hozack W, Collopy D, Mayr E, Deirmengian G, Sekyra K (2012) Alignment for total knee replacement: a comparison of kinematic axis versus mechanical axis techniques. A cadaver study. Int Orthop 36(11):2249–2253.  https://doi.org/10.1007/s00264-012-1642-2 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fang DM, Ritter MA, Davis KE (2009) Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplast 24(6 Suppl):39–43.  https://doi.org/10.1016/j.arth.2009.04.034 CrossRefGoogle Scholar
  43. 43.
    Parratte S, Pagnano MW, Trousdale RT, Berry DJ (2010) Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Jt Surg Am 92(12):2143–2149.  https://doi.org/10.2106/JBJS.I.01398 CrossRefGoogle Scholar
  44. 44.
    Courtney PM, Lee GC (2017) Early outcomes of kinematic alignment in primary total knee arthroplasty: a meta-analysis of the literature. J Arthroplast.  https://doi.org/10.1016/j.arth.2017.02.041 CrossRefGoogle Scholar
  45. 45.
    Lee YS, Howell SM, Won YY, Lee OS, Lee SH, Vahedi H, Teo SH (2017) Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc.  https://doi.org/10.1007/s00167-017-4558-y CrossRefPubMedGoogle Scholar
  46. 46.
    Li Y, Wang S, Wang Y, Yang M (2017) Does kinematic alignment improve short-term functional outcomes after total knee arthroplasty compared with mechanical alignment? A systematic review and meta-analysis. J Knee Surg.  https://doi.org/10.1055/s-0037-1602136 CrossRefPubMedGoogle Scholar
  47. 47.
    Yoon JR, Han SB, Jee MK, Shin YS (2017) Comparison of kinematic and mechanical alignment techniques in primary total knee arthroplasty: a meta-analysis. Medicine (Baltimore) 96(39):e8157.  https://doi.org/10.1097/MD.0000000000008157 CrossRefGoogle Scholar
  48. 48.
    Thienpont E, Schwab PE, Cornu O, Bellemans J, Victor J (2017) Bone morphotypes of the varus and valgus knee. Arch Orthop Trauma Surg 137(3):393–400.  https://doi.org/10.1007/s00402-017-2626-x CrossRefPubMedGoogle Scholar
  49. 49.
    Halder A, Kutzner I, Graichen F, Heinlein B, Beier A, Bergmann G (2012) Influence of limb alignment on mediolateral loading in total knee replacement: in vivo measurements in five patients. J Bone Jt Surg Am 94(11):1023–1029.  https://doi.org/10.2106/JBJS.K.00927 CrossRefGoogle Scholar
  50. 50.
    Fehring TK, Fehring KA, Anderson LA, Otero JE, Springer BD (2017) Catastrophic varus collapse of the tibia in obese total knee arthroplasty. J Arthroplast 32(5):1625–1629.  https://doi.org/10.1016/j.arth.2016.12.001 CrossRefGoogle Scholar
  51. 51.
    Clark G, Leong A, McEwen P, Steele R, Tran T, Trivett A (2013) Intra-operative reliability of ShapeMatch cutting guide placement in total knee arthroplasty. Comput Aided Surg 18(5–6):159–165.  https://doi.org/10.3109/10929088.2013.774049 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of AucklandAucklandNew Zealand
  2. 2.Department of OrthopaedicsNorth Shore HospitalAucklandNew Zealand
  3. 3.Department of StatisticsUniversity of AucklandAucklandNew Zealand
  4. 4.Department of Orthopaedic SurgeryHannover Medical SchoolHannoverGermany
  5. 5.Exeter Knee Reconstruction UnitPrincess Elizabeth Orthopaedic Centre, Royal Devon and Exeter HospitalExeterUK

Personalised recommendations