Archives of Orthopaedic and Trauma Surgery

, Volume 138, Issue 9, pp 1265–1272 | Cite as

Differences between traumatic and non-traumatic causes of ACL revision surgery

  • Vera Jaecker
  • Tabea Zapf
  • Jan-Hendrik Naendrup
  • Ajay C. Kanakamedala
  • Thomas Pfeiffer
  • Sven Shafizadeh
Arthroscopy and Sports Medicine



The purpose of this study was to evaluate and classify causes for anterior cruciate ligament (ACL) reconstruction failure. It was hypothesized that specific technical and biological reconstruction aspects would differ when comparing traumatic and non-traumatic ACL reconstruction failures.

Materials and methods

One hundred and forty-seven consecutive patients who experienced ACL reconstruction failure and underwent revision between 2009 and 2014 were analyzed. Based on a systematic failure analysis, including evaluation of technical information on primary ACL reconstruction and radiological assessment of tunnel positions, causes were classified into traumatic and non-traumatic mechanisms of failure; non-traumatic mechanisms were further sub-divided into technical and biologic causes. Spearman’s rank correlation coefficient and chi-squared tests were performed to determine differences between groups based on various factors including graft choice, fixation technique, technique of femoral tunnel positioning, tunnel malpositioning, and time to revision.


Non-traumatic, i.e., technical, and traumatic mechanisms of ACL reconstruction failure were found in 64.5 and 29.1% of patients, respectively. Biological failure was found only in 6.4% of patients. Non-anatomical femoral tunnel positioning was found the most common cause (83.1%) for technical reconstruction failure followed by non-anatomical tibial tunnel positioning (45.1%). There were strong correlations between non-traumatic technical failure and femoral tunnel malpositioning, transtibial femoral tunnel drilling techniques, femoral transfixation techniques as well as earlier graft failure (p < 0.05).


Technical causes, particularly tunnel malpositioning, were significantly correlated with increased incidence of non-traumatic ACL reconstruction failure. Transtibial femoral tunnel positioning techniques and femoral transfixation techniques, showed an increased incidence of non-traumatic, earlier graft failure.


Anterior cruciate ligament (ACL) ACL reconstruction Revision Tunnel positioning Transtibial femoral tunnel positioning Femoral transfixation techniques 



There is no funding source.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Institutional review board approval was obtained by the ethics committee of Witten/Herdecke University (IRB Number: 09-2015).


  1. 1.
    Kamath GV, Redfern JC, Greis PE, Burks RT (2011) Revision anterior cruciate ligament reconstruction. Am J Sports Med 39(1):199–217. CrossRefPubMedGoogle Scholar
  2. 2.
    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Chen JL, Allen CR, Stephens TE, Haas AK, Huston LJ, Wright RW, Feeley BT, Multicenter ACLRSG. (2013) Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: a MARS cohort study. Am J Sports Med 41(7):1571–1578. CrossRefPubMedGoogle Scholar
  4. 4.
    Spindler KP (2007) The Multicenter ACL Revision Study (MARS): a prospective longitudinal cohort to define outcomes and independent predictors of outcomes for revision anterior cruciate ligament reconstruction. J Knee Surg 20(4):303–307CrossRefPubMedGoogle Scholar
  5. 5.
    Jarvela T (2007) Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc 15(5):500–507. CrossRefPubMedGoogle Scholar
  6. 6.
    Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21(8):948–957. CrossRefPubMedGoogle Scholar
  7. 7.
    Snow M, Campbell G, Adlington J, Stanish WD (2010) Two to five year results of primary ACL reconstruction using doubled tibialis anterior allograft. Knee Surg Sports Traumatol Arthrosc 18(10):1374–1378. CrossRefPubMedGoogle Scholar
  8. 8.
    Shah AA, McCulloch PC, Lowe WR (2010) Failure rate of Achilles tendon allograft in primary anterior cruciate ligament reconstruction. Arthroscopy 26(5):667–674. CrossRefPubMedGoogle Scholar
  9. 9.
    Brophy RH, Haas AK, Huston LJ, Nwosu SK, Group M, Wright RW (2015) Association of meniscal status, lower extremity alignment, and body mass index with chondrosis at revision anterior cruciate ligament reconstruction. Am J Sports Med 43(7):1616–1622. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62. CrossRefPubMedGoogle Scholar
  11. 11.
    Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469(8):2377–2384. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ireland ML, Ballantyne BT, Little K, McClay IS (2001) A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 9(4):200–205. CrossRefPubMedGoogle Scholar
  13. 13.
    MARS GROUP (2014) Effect of graft choice on the outcome of revision anterior cruciate ligament reconstruction in the Multicenter ACL Revision Study (MARS) Cohort. Am J Sports Med 42(10):2301–2310. CrossRefGoogle Scholar
  14. 14.
    Group M, Wright RW, Huston LJ, Spindler KP, Dunn WR, Haas AK, Allen CR, Cooper DE, DeBerardino TM, Lantz BB, Mann BJ, Stuart MJ (2010) Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 38(10):1979–1986. CrossRefGoogle Scholar
  15. 15.
    Matava MJ, Arciero RA, Baumgarten KM, Carey JL, DeBerardino TM, Hame SL, Hannafin JA, Miller BS, Nissen CW, Taft TN, Wolf BR, Wright RW, Group M (2015) Multirater agreement of the causes of anterior cruciate ligament reconstruction failure: a radiographic and video analysis of the MARS cohort. Am J Sports Med 43(2):310–319. CrossRefPubMedGoogle Scholar
  16. 16.
    Dejour D, Ntagiopoulos PG, Saggin PR, Panisset JC (2013) The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy 29(3):491–499. CrossRefPubMedGoogle Scholar
  17. 17.
    Irrgang JJ, Ho H, Harner CD, Fu FH (1998) Use of the international knee documentation committee guidelines to assess outcome following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6(2):107–114. CrossRefPubMedGoogle Scholar
  18. 18.
    Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29(5):600–613CrossRefPubMedGoogle Scholar
  19. 19.
    Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10(1):14–21 (discussion 21–12) PubMedGoogle Scholar
  20. 20.
    Staubli HU, Rauschning W (1994) Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc 2(3):138–146CrossRefPubMedGoogle Scholar
  21. 21.
    Zantop T, Wellmann M, Fu FH, Petersen W (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36(1):65–72. CrossRefPubMedGoogle Scholar
  22. 22.
    Sullivan JP, Matava MJ, Flanigan DC, Gao Y, Britton CL, Amendola A, Group M, Wolf BR (2012) Reliability of tunnel measurements and the quadrant method using fluoroscopic radiographs after anterior cruciate ligament reconstruction. Am J Sports Med 40(10):2236–2241. CrossRefPubMedGoogle Scholar
  23. 23.
    Carson EW, Anisko EM, Restrepo C, Panariello RA, O’Brien SJ, Warren RF (2004) Revision anterior cruciate ligament reconstruction: etiology of failures and clinical results. J Knee Surg 17(3):127–132CrossRefPubMedGoogle Scholar
  24. 24.
    Salmon LJ, Pinczewski LA, Russell VJ, Refshauge K (2006) Revision anterior cruciate ligament reconstruction with hamstring tendon autograft: 5- to 9-year follow-up. Am J Sports Med 34(10):1604–1614. CrossRefPubMedGoogle Scholar
  25. 25.
    Noyes FR, Barber-Westin SD (2006) Anterior cruciate ligament revision reconstruction: results using a quadriceps tendon-patellar bone autograft. Am J Sports Med 34(4):553–564. CrossRefPubMedGoogle Scholar
  26. 26.
    Wright R, Spindler K, Huston L, Amendola A, Andrish J, Brophy R, Carey J, Cox C, Flanigan D, Jones M, Kaeding C, Marx R, Matava M, McCarty E, Parker R, Vidal A, Wolcott M, Wolf B, Dunn W (2011) Revision ACL reconstruction outcomes: MOON cohort. J Knee Surg 24(4):289–294CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Diamantopoulos AP, Lorbach O, Paessler HH (2008) Anterior cruciate ligament revision reconstruction: results in 107 patients. Am J Sports Med 36(5):851–860. CrossRefPubMedGoogle Scholar
  28. 28.
    Morgan JA, Dahm D, Levy B, Stuart MJ, Group MS (2012) Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg 25(5):361–368. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Garofalo R, Djahangiri A, Siegrist O (2006) Revision anterior cruciate ligament reconstruction with quadriceps tendon-patellar bone autograft. Arthroscopy 22(2):205–214. CrossRefPubMedGoogle Scholar
  30. 30.
    Duffee A, Magnussen RA, Pedroza AD, Flanigan DC, Group M, Kaeding CC (2013) Transtibial ACL femoral tunnel preparation increases odds of repeat ipsilateral knee surgery. J Bone Joint Surg Am Vol 95(22):2035–2042. CrossRefGoogle Scholar
  31. 31.
    Johnson DL, Swenson TM, Irrgang JJ, Fu FH, Harner CD (1996) Revision anterior cruciate ligament surgery: experience from Pittsburgh. Clin Orthop Relat Res 325(325):100–109CrossRefGoogle Scholar
  32. 32.
    Arno S, Bell CP, Alaia MJ, Singh BC, Jazrawi LM, Walker PS, Bansal A, Garofolo G, Sherman OH (2016) Does anteromedial portal drilling improve footprint placement in anterior cruciate ligament reconstruction? Clin Orthop Relat Res. PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chen Y, Chua KH, Singh A, Tan JH, Chen X, Tan SH, Tai BC, Lingaraj K (2015) Outcome of single-bundle hamstring anterior cruciate ligament reconstruction using the anteromedial versus the transtibial technique: a systematic review and meta-analysis. Arthroscopy 31(9):1784–1794. CrossRefPubMedGoogle Scholar
  34. 34.
    Thein R, Spitzer E, Doyle J, Khamaisy S, Nawabi DH, Chawla H, Lipman JD, Pearle AD (2016) The ACL graft has different cross-sectional dimensions compared with the native ACL: implications for graft impingement. Am J Sports Med. PubMedCrossRefGoogle Scholar
  35. 35.
    Ahn JH, Lee YS, Jeong HJ, Park JH, Cho Y, Kim KJ, Ko TS (2017) Comparison of transtibial and retrograde outside-in techniques of anterior cruciate ligament reconstruction in terms of graft nature and clinical outcomes: a case control study using 3T MRI. Arch Orthop Trauma Surg 137(3):357–365. CrossRefPubMedGoogle Scholar
  36. 36.
    Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind MC (2013) Increased risk of revision after anteromedial compared with transtibial drilling of the femoral tunnel during primary anterior cruciate ligament reconstruction: results from the Danish Knee Ligament Reconstruction Register. Arthroscopy 29(1):98–105. CrossRefPubMedGoogle Scholar
  37. 37.
    Jaecker V, Zapf T, Naendrup JH, Pfeiffer T, Kanakamedala AC, Wafaisade A, Shafizadeh S (2017) High non-anatomic tunnel position rates in ACL reconstruction failure using both transtibial and anteromedial tunnel drilling techniques. Arch Orthop Trauma Surg 137(9):1293–1299. CrossRefPubMedGoogle Scholar
  38. 38.
    Zhu M, Li S, Su Z, Zhou X, Peng P, Li J, Wang J, Lin L (2018) Tibial tunnel placement in anatomic anterior cruciate ligament reconstruction: a comparison study of outcomes between patient-specific drill template versus conventional arthroscopic techniques. Arch Orthop Trauma Surg 138(4):515–525. CrossRefPubMedGoogle Scholar
  39. 39.
    Anderson MJ, Browning WM 3rd, Urband CE, Kluczynski MA, Bisson LJ (2016) A systematic summary of systematic reviews on the topic of the anterior cruciate ligament. Orthop J Sports Med 4(3):2325967116634074. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gifstad T, Foss OA, Engebretsen L, Lind M, Forssblad M, Albrektsen G, Drogset JO (2014) Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 42(10):2319–2328. CrossRefPubMedGoogle Scholar
  41. 41.
    Jaureguito JW, Paulos LE (1996) Why grafts fail. Clin Orthop Relat Res (325):25–41Google Scholar
  42. 42.
    Eitzen I, Holm I, Risberg MA (2009) Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med 43(5):371–376. CrossRefPubMedGoogle Scholar
  43. 43.
    Shelbourne KD, Gray T, Haro M (2009) Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med 37(2):246–251. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vera Jaecker
    • 1
  • Tabea Zapf
    • 1
  • Jan-Hendrik Naendrup
    • 1
  • Ajay C. Kanakamedala
    • 2
  • Thomas Pfeiffer
    • 1
  • Sven Shafizadeh
    • 3
  1. 1.Department of Trauma and Orthopaedic Surgery, Cologne Merheim Medical CentreWitten/Herdecke UniversityCologneGermany
  2. 2.University of Pittsburgh Medical CenterPittsburghUSA
  3. 3.Department of Sports Traumatology and Trauma SurgeryWitten/Herdecke UniversityCologneGermany

Personalised recommendations