No influence of obesity on survival of cementless, posterior-stabilised, rotating-platform implants

  • Romain Gaillard
  • Thierry Gaillard
  • Stephane Denjean
  • Sebastien Lustig
Knee Arthroplasty

Abstract

Introduction

This study compares survival and outcomes in four total knee arthroplasty (TKA) populations defined by baseline body mass index (BMI). We hypothesised that there would be no difference in survival between the groups.

Materials and methods

Using an initial cohort of 1059 TKAs, BMI was systematically measured prior to surgery. A retrospective study was conducted and patients were accordingly allocated to four groups: normal or underweight (BMI < 25; n = 111), overweight (25 ≤ BMI < 30; n = 417), moderately obese (30 ≤ BMI < 35; n = 330) and severely or morbidly obese (BMI ≥ 35; n = 201). The pre- and postoperative clinical and radiographical profiles of the four groups were compared, along with any postoperative complications and the survival of each group. The minimum follow-up was 24 months. All implants had an ultra-congruent cementless posterior-stabilised rotating-platform design (Amplitude®). The primary endpoint was implant survival using Kaplan–Meier analysis. Statistical analysis was conducted using Chi-squared and Kruskal–Wallis H tests to compare the data with p < 0.05.

Results

A total of 94 knees from normal weight or underweight individuals were analysed, 346 from overweight, 281 from moderately obese and 159 from severely or morbidly obese. All knees had been operated on between 2002 and 2011 with an average follow-up of 61.7 (12–146) months. A greater degree of obesity was significantly correlated with young age at intervention (p < 0.001), as well as with a low average preoperative maximum flexion angle (p < 0.001) and KSS (p < 0.001). Postoperatively, there were no significant differences between the groups in terms of patient satisfaction (p = 0.9) or mechanical axial deviation evaluated with whole-leg standing radiography (mFTA, p = 0.3; mFA, p = 0.1; mTA, p = 0.3). The greater the degree of obesity, the lower the average postoperative maximum flexion angle (p < 0.001), KSS knee score (p < 0.001) and function score (p = 0.005). There was no significant difference between the groups in terms of total rate of postoperative complications (p = 0.9) or implant revision (p = 0.9), or in terms of 10-year implant survival (p = 0.4).

Conclusions

Obesity does not affect mid-term implant survival, irrespective of BMI, but has a negative influence on functional outcomes and potential risk of postoperative complications.

Keywords

TKA Obesity Survival BMI KSS 

Abbreviations

TKA

Total knee arthroplasty

BMI

Body mass index

KSS

Knee Society Score

ATT

Anterior tibial tubercle

mFTA

Mechanical femorotibial angle

mFA

Mechanical femoral angle

mTA

Mechanical tibial angle

References

  1. 1.
    Electricwala AJ, Jethanandani RG, Narkbunnam R et al (2016) Elevated body mass index is associated with early total knee revision for infection. J Arthroplasty. doi:10.1016/j.arth.2016.05.071 Google Scholar
  2. 2.
    Chen JY, Lo NN, Chong HC et al (2016) The influence of body mass index on functional outcome and quality of life after total knee arthroplasty. Bone Jt J 98-B:780–785. doi:10.1302/0301-620X.98B6.35709 CrossRefGoogle Scholar
  3. 3.
    Si H, Zeng Y, Shen B et al (2015) The influence of body mass index on the outcomes of primary total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23:1824–1832. doi:10.1007/s00167-014-3301-1 CrossRefPubMedGoogle Scholar
  4. 4.
    Collins RA, Walmsley PJ, Amin AK et al (2012) Does obesity influence clinical outcome at nine years following total knee replacement? J Bone Joint Surg Br 94:1351–1355. doi:10.1302/0301-620X.94B10.28894 CrossRefPubMedGoogle Scholar
  5. 5.
    Abdel MP, Bonadurer GF, Jennings MT, Hanssen AD (2015) Increased aseptic tibial failures in patients with a BMI ≥ 35 and well-aligned total knee arthroplasties. J Arthroplasty 30:2181–2184. doi:10.1016/j.arth.2015.06.057 CrossRefPubMedGoogle Scholar
  6. 6.
    Bagsby DT, Issa K, Smith LS et al (2016) Cemented vs cementless total knee arthroplasty in morbidly obese patients. J Arthroplasty 31:1727–1731. doi:10.1016/j.arth.2016.01.025 CrossRefPubMedGoogle Scholar
  7. 7.
    Lizaur-Utrilla A, Miralles-Muñoz FA, Sanz-Reig J, Collados-Maestre I (2014) Cementless total knee arthroplasty in obese patients: a prospective matched study with follow-up of 5–10 years. J Arthroplasty 29:1192–1196. doi:10.1016/j.arth.2013.11.011 CrossRefPubMedGoogle Scholar
  8. 8.
    Huang Z, Ouyang G, Xiao L (2011) Rotating-platform knee arthroplasty: a review and update. Orthop Surg 3:224–228. doi:10.1111/j.1757-7861.2011.00156.x CrossRefPubMedGoogle Scholar
  9. 9.
    Bo Z, Liao L, Zhao J et al (2014) Mobile bearing or fixed bearing? A meta-analysis of outcomes comparing mobile bearing and fixed bearing bilateral total knee replacements. Knee 21:374–381. doi:10.1016/j.knee.2013.10.002 CrossRefPubMedGoogle Scholar
  10. 10.
    van der Voort P, Pijls BG, Nouta KA et al (2013) A systematic review and meta-regression of mobile-bearing versus fixed-bearing total knee replacement in 41 studies. Bone Jt J 95-B:1209–1216. doi:10.1302/0301-620X.95B9.30386 CrossRefGoogle Scholar
  11. 11.
    Lingard EA, Katz JN, Wright RJ et al (2001) Validity and responsiveness of the Knee Society Clinical Rating System in comparison with the SF-36 and WOMAC. J Bone Joint Surg Am 83-A:1856–1864CrossRefPubMedGoogle Scholar
  12. 12.
    Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop 248:9–12Google Scholar
  13. 13.
    Healy WL, Della Valle CJ, Iorio R et al (2013) Complications of total knee arthroplasty: standardized list and definitions of the Knee Society. Clin Orthop 471:215–220. doi:10.1007/s11999-012-2489-y CrossRefPubMedGoogle Scholar
  14. 14.
    Coggon D, Reading I, Croft P et al (2001) Knee osteoarthritis and obesity. Int J Obes Relat Metab Disord J Int Assoc Study Obes 25:622–627. doi:10.1038/sj.ijo.0801585 CrossRefGoogle Scholar
  15. 15.
    Hartz AJ, Fischer ME, Bril G et al (1986) The association of obesity with joint pain and osteoarthritis in the HANES data. J Chronic Dis 39:311–319CrossRefPubMedGoogle Scholar
  16. 16.
    Derman PB, Fabricant PD, David G (2014) The role of overweight and obesity in relation to the more rapid growth of total knee arthroplasty volume compared with total hip arthroplasty volume. J Bone Joint Surg Am 96:922–928. doi:10.2106/JBJS.L.01731 CrossRefPubMedGoogle Scholar
  17. 17.
    Marks R (2007) Obesity profiles with knee osteoarthritis: correlation with pain, disability, disease progression. Obes Silver Spring Md 15:1867–1874. doi:10.1038/oby.2007.221 CrossRefGoogle Scholar
  18. 18.
    Sharma L, Lou C, Cahue S, Dunlop DD (2000) The mechanism of the effect of obesity in knee osteoarthritis: the mediating role of malalignment. Arthritis Rheum 43:568–575. doi:10.1002/1529-0131(200003)43:3<568:AID-ANR13>3.0.CO;2-E CrossRefPubMedGoogle Scholar
  19. 19.
    Torres-Claramunt R, Hinarejos P, Leal-Blanquet J et al (2016) Does obesity influence on the functional outcomes of a total knee arthroplasty? Obes Surg. doi:10.1007/s11695-016-2233-x PubMedGoogle Scholar
  20. 20.
    Baker P, Petheram T, Jameson S et al (2012) The association between body mass index and the outcomes of total knee arthroplasty. J Bone Joint Surg Am 94:1501–1508. doi:10.2106/JBJS.K.01180 CrossRefPubMedGoogle Scholar
  21. 21.
    Ayyar V, Burnett R, Coutts FJ et al (2012) The influence of obesity on patient reported outcomes following total knee replacement. Arthritis 2012:185208. doi:10.1155/2012/185208 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kerkhoffs GMMJ, Servien E, Dunn W et al (2012) The influence of obesity on the complication rate and outcome of total knee arthroplasty: a meta-analysis and systematic literature review. J Bone Joint Surg Am 94:1839–1844. doi:10.2106/JBJS.K.00820 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Estes CS, Schmidt KJ, McLemore R et al (2013) Effect of body mass index on limb alignment after total knee arthroplasty. J Arthroplasty 28:101–105. doi:10.1016/j.arth.2013.02.038 CrossRefPubMedGoogle Scholar
  24. 24.
    Bordini B, Stea S, Cremonini S et al (2009) Relationship between obesity and early failure of total knee prostheses. BMC Musculoskelet Disord 10:29. doi:10.1186/1471-2474-10-29 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Issa K, Pivec R, Kapadia BH et al (2013) Does obesity affect the outcomes of primary total knee arthroplasty? J Knee Surg 26:89–94. doi:10.1055/s-0033-1341408 CrossRefPubMedGoogle Scholar
  26. 26.
    Panzram B, Bertlich I, Reiner T et al (2017) Cementless Oxford medial unicompartmental knee replacement: an independent series with a 5-year-follow-up. Arch Orthop Trauma Surg 137:1011–1017. doi:10.1007/s00402-017-2696-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Jackson MP, Sexton SA, Walter WL et al (2009) The impact of obesity on the mid-term outcome of cementless total knee replacement. J Bone Joint Surg Br 91:1044–1048. doi:10.1302/0301-620X.91B8.22129 CrossRefPubMedGoogle Scholar
  28. 28.
    Gøttsche D, Lind T, Christiansen T, Schrøder HM (2016) Cementless metaphyseal sleeves without stem in revision total knee arthroplasty. Arch Orthop Trauma Surg 136:1761–1766. doi:10.1007/s00402-016-2583-9 CrossRefPubMedGoogle Scholar
  29. 29.
    Benzing C, Skwara A, Figiel J, Paletta J (2016) Initial stability of a new cementless fixation method of a tibial component with polyaxial locking screws: a biomechanical in vitro examination. Arch Orthop Trauma Surg 136:1309–1316. doi:10.1007/s00402-016-2517-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Romain Gaillard
    • 1
  • Thierry Gaillard
    • 2
  • Stephane Denjean
    • 3
  • Sebastien Lustig
    • 1
  1. 1.Albert Trillat Center, Hôpital de la Croix-RousseUniversité Lyon 1LyonFrance
  2. 2.Polyclinique du BeaujolaisArnasFrance
  3. 3.Polyclinique du Val de SaôneMaconFrance

Personalised recommendations