Skip to main content
Log in

No influence of obesity on survival of cementless, posterior-stabilised, rotating-platform implants

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

This study compares survival and outcomes in four total knee arthroplasty (TKA) populations defined by baseline body mass index (BMI). We hypothesised that there would be no difference in survival between the groups.

Materials and methods

Using an initial cohort of 1059 TKAs, BMI was systematically measured prior to surgery. A retrospective study was conducted and patients were accordingly allocated to four groups: normal or underweight (BMI < 25; n = 111), overweight (25 ≤ BMI < 30; n = 417), moderately obese (30 ≤ BMI < 35; n = 330) and severely or morbidly obese (BMI ≥ 35; n = 201). The pre- and postoperative clinical and radiographical profiles of the four groups were compared, along with any postoperative complications and the survival of each group. The minimum follow-up was 24 months. All implants had an ultra-congruent cementless posterior-stabilised rotating-platform design (Amplitude®). The primary endpoint was implant survival using Kaplan–Meier analysis. Statistical analysis was conducted using Chi-squared and Kruskal–Wallis H tests to compare the data with p < 0.05.

Results

A total of 94 knees from normal weight or underweight individuals were analysed, 346 from overweight, 281 from moderately obese and 159 from severely or morbidly obese. All knees had been operated on between 2002 and 2011 with an average follow-up of 61.7 (12–146) months. A greater degree of obesity was significantly correlated with young age at intervention (p < 0.001), as well as with a low average preoperative maximum flexion angle (p < 0.001) and KSS (p < 0.001). Postoperatively, there were no significant differences between the groups in terms of patient satisfaction (p = 0.9) or mechanical axial deviation evaluated with whole-leg standing radiography (mFTA, p = 0.3; mFA, p = 0.1; mTA, p = 0.3). The greater the degree of obesity, the lower the average postoperative maximum flexion angle (p < 0.001), KSS knee score (p < 0.001) and function score (p = 0.005). There was no significant difference between the groups in terms of total rate of postoperative complications (p = 0.9) or implant revision (p = 0.9), or in terms of 10-year implant survival (p = 0.4).

Conclusions

Obesity does not affect mid-term implant survival, irrespective of BMI, but has a negative influence on functional outcomes and potential risk of postoperative complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TKA:

Total knee arthroplasty

BMI:

Body mass index

KSS:

Knee Society Score

ATT:

Anterior tibial tubercle

mFTA:

Mechanical femorotibial angle

mFA:

Mechanical femoral angle

mTA:

Mechanical tibial angle

References

  1. Electricwala AJ, Jethanandani RG, Narkbunnam R et al (2016) Elevated body mass index is associated with early total knee revision for infection. J Arthroplasty. doi:10.1016/j.arth.2016.05.071

    Google Scholar 

  2. Chen JY, Lo NN, Chong HC et al (2016) The influence of body mass index on functional outcome and quality of life after total knee arthroplasty. Bone Jt J 98-B:780–785. doi:10.1302/0301-620X.98B6.35709

    Article  CAS  Google Scholar 

  3. Si H, Zeng Y, Shen B et al (2015) The influence of body mass index on the outcomes of primary total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23:1824–1832. doi:10.1007/s00167-014-3301-1

    Article  PubMed  Google Scholar 

  4. Collins RA, Walmsley PJ, Amin AK et al (2012) Does obesity influence clinical outcome at nine years following total knee replacement? J Bone Joint Surg Br 94:1351–1355. doi:10.1302/0301-620X.94B10.28894

    Article  CAS  PubMed  Google Scholar 

  5. Abdel MP, Bonadurer GF, Jennings MT, Hanssen AD (2015) Increased aseptic tibial failures in patients with a BMI ≥ 35 and well-aligned total knee arthroplasties. J Arthroplasty 30:2181–2184. doi:10.1016/j.arth.2015.06.057

    Article  PubMed  Google Scholar 

  6. Bagsby DT, Issa K, Smith LS et al (2016) Cemented vs cementless total knee arthroplasty in morbidly obese patients. J Arthroplasty 31:1727–1731. doi:10.1016/j.arth.2016.01.025

    Article  PubMed  Google Scholar 

  7. Lizaur-Utrilla A, Miralles-Muñoz FA, Sanz-Reig J, Collados-Maestre I (2014) Cementless total knee arthroplasty in obese patients: a prospective matched study with follow-up of 5–10 years. J Arthroplasty 29:1192–1196. doi:10.1016/j.arth.2013.11.011

    Article  PubMed  Google Scholar 

  8. Huang Z, Ouyang G, Xiao L (2011) Rotating-platform knee arthroplasty: a review and update. Orthop Surg 3:224–228. doi:10.1111/j.1757-7861.2011.00156.x

    Article  PubMed  Google Scholar 

  9. Bo Z, Liao L, Zhao J et al (2014) Mobile bearing or fixed bearing? A meta-analysis of outcomes comparing mobile bearing and fixed bearing bilateral total knee replacements. Knee 21:374–381. doi:10.1016/j.knee.2013.10.002

    Article  PubMed  Google Scholar 

  10. van der Voort P, Pijls BG, Nouta KA et al (2013) A systematic review and meta-regression of mobile-bearing versus fixed-bearing total knee replacement in 41 studies. Bone Jt J 95-B:1209–1216. doi:10.1302/0301-620X.95B9.30386

    Article  Google Scholar 

  11. Lingard EA, Katz JN, Wright RJ et al (2001) Validity and responsiveness of the Knee Society Clinical Rating System in comparison with the SF-36 and WOMAC. J Bone Joint Surg Am 83-A:1856–1864

    Article  CAS  PubMed  Google Scholar 

  12. Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop 248:9–12

    Google Scholar 

  13. Healy WL, Della Valle CJ, Iorio R et al (2013) Complications of total knee arthroplasty: standardized list and definitions of the Knee Society. Clin Orthop 471:215–220. doi:10.1007/s11999-012-2489-y

    Article  PubMed  Google Scholar 

  14. Coggon D, Reading I, Croft P et al (2001) Knee osteoarthritis and obesity. Int J Obes Relat Metab Disord J Int Assoc Study Obes 25:622–627. doi:10.1038/sj.ijo.0801585

    Article  CAS  Google Scholar 

  15. Hartz AJ, Fischer ME, Bril G et al (1986) The association of obesity with joint pain and osteoarthritis in the HANES data. J Chronic Dis 39:311–319

    Article  CAS  PubMed  Google Scholar 

  16. Derman PB, Fabricant PD, David G (2014) The role of overweight and obesity in relation to the more rapid growth of total knee arthroplasty volume compared with total hip arthroplasty volume. J Bone Joint Surg Am 96:922–928. doi:10.2106/JBJS.L.01731

    Article  PubMed  Google Scholar 

  17. Marks R (2007) Obesity profiles with knee osteoarthritis: correlation with pain, disability, disease progression. Obes Silver Spring Md 15:1867–1874. doi:10.1038/oby.2007.221

    Article  Google Scholar 

  18. Sharma L, Lou C, Cahue S, Dunlop DD (2000) The mechanism of the effect of obesity in knee osteoarthritis: the mediating role of malalignment. Arthritis Rheum 43:568–575. doi:10.1002/1529-0131(200003)43:3<568:AID-ANR13>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  19. Torres-Claramunt R, Hinarejos P, Leal-Blanquet J et al (2016) Does obesity influence on the functional outcomes of a total knee arthroplasty? Obes Surg. doi:10.1007/s11695-016-2233-x

    PubMed  Google Scholar 

  20. Baker P, Petheram T, Jameson S et al (2012) The association between body mass index and the outcomes of total knee arthroplasty. J Bone Joint Surg Am 94:1501–1508. doi:10.2106/JBJS.K.01180

    Article  PubMed  Google Scholar 

  21. Ayyar V, Burnett R, Coutts FJ et al (2012) The influence of obesity on patient reported outcomes following total knee replacement. Arthritis 2012:185208. doi:10.1155/2012/185208

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kerkhoffs GMMJ, Servien E, Dunn W et al (2012) The influence of obesity on the complication rate and outcome of total knee arthroplasty: a meta-analysis and systematic literature review. J Bone Joint Surg Am 94:1839–1844. doi:10.2106/JBJS.K.00820

    Article  PubMed  PubMed Central  Google Scholar 

  23. Estes CS, Schmidt KJ, McLemore R et al (2013) Effect of body mass index on limb alignment after total knee arthroplasty. J Arthroplasty 28:101–105. doi:10.1016/j.arth.2013.02.038

    Article  PubMed  Google Scholar 

  24. Bordini B, Stea S, Cremonini S et al (2009) Relationship between obesity and early failure of total knee prostheses. BMC Musculoskelet Disord 10:29. doi:10.1186/1471-2474-10-29

    Article  PubMed  PubMed Central  Google Scholar 

  25. Issa K, Pivec R, Kapadia BH et al (2013) Does obesity affect the outcomes of primary total knee arthroplasty? J Knee Surg 26:89–94. doi:10.1055/s-0033-1341408

    Article  PubMed  Google Scholar 

  26. Panzram B, Bertlich I, Reiner T et al (2017) Cementless Oxford medial unicompartmental knee replacement: an independent series with a 5-year-follow-up. Arch Orthop Trauma Surg 137:1011–1017. doi:10.1007/s00402-017-2696-9

    Article  PubMed  Google Scholar 

  27. Jackson MP, Sexton SA, Walter WL et al (2009) The impact of obesity on the mid-term outcome of cementless total knee replacement. J Bone Joint Surg Br 91:1044–1048. doi:10.1302/0301-620X.91B8.22129

    Article  CAS  PubMed  Google Scholar 

  28. Gøttsche D, Lind T, Christiansen T, Schrøder HM (2016) Cementless metaphyseal sleeves without stem in revision total knee arthroplasty. Arch Orthop Trauma Surg 136:1761–1766. doi:10.1007/s00402-016-2583-9

    Article  PubMed  Google Scholar 

  29. Benzing C, Skwara A, Figiel J, Paletta J (2016) Initial stability of a new cementless fixation method of a tibial component with polyaxial locking screws: a biomechanical in vitro examination. Arch Orthop Trauma Surg 136:1309–1316. doi:10.1007/s00402-016-2517-6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RG participated in the design of the study and performed the statistical analysis. TG collected data of the study. SD collected data of the study. SL conceived of the study, and participated in its design and coordination.

Corresponding author

Correspondence to Sebastien Lustig.

Ethics declarations

Conflict of interest

RG: no conflict of interest. TG: royalties from Amplitude®. SD: royalties from Amplitude®. SL: fees from Smith & Nephew® and Medacta®, research funding from Tornier-Wright® and Amplitude®.

Ethical approval

The data were collected using CliniRecord, which was approved by the CNIL (Commission Nationale de l’Informatique et des Libertés) in 2009 (No. 1355265), with permission to extend the data storage period granted in 2011, and was declared compliant with the CNIL’s reference methodology MR-003 in 2016 (No. 2007515).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaillard, R., Gaillard, T., Denjean, S. et al. No influence of obesity on survival of cementless, posterior-stabilised, rotating-platform implants. Arch Orthop Trauma Surg 137, 1743–1750 (2017). https://doi.org/10.1007/s00402-017-2801-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-017-2801-0

Keywords

Navigation