Archives of Orthopaedic and Trauma Surgery

, Volume 137, Issue 11, pp 1579–1585 | Cite as

Effect of changes of femoral offset on abductor and joint reaction forces in total hip arthroplasty

  • Hannes A. Rüdiger
  • Maïka Guillemin
  • Adeliya Latypova
  • Alexandre Terrier
Hip Arthroplasty



Anatomical reconstruction in total hip arthroplasty (THA) allows for physiological muscle function, good functional outcome and implant longevity. Quantitative data on the effect of a loss or gain of femoral offset (FO) are scarce. The aim of this study was to quantitatively describe the effect of FO changes on abductor moment arms, muscle and joint reactions forces.


THA was virtually performed on 3D models built from preoperative CT scans of 15 patients undergoing THA. Virtual THA was performed with a perfectly anatomical reconstruction, a loss of 20% of FO (−FO), and a gain of 20% of FO (+FO). These models were combined with a generic musculoskeletal model (OpenSim) to predict moment arms, muscle and joint reaction forces during normal gait cycles.


In average, with −FO reconstructions, muscle moment arms decreased, while muscle and hip forces increased significantly (p < 0.001). We observed the opposite with +FO reconstructions. Gluteus medius was more affected than gluteus minimus. −FO had more effect than +FO. A change of 20% of FO induced an average change 8% of abductor moment arms, 16% of their forces, and 6% of the joint reaction force.


To our knowledge, this is the first report providing quantitative data on the effect of FO changes on muscle and joint forces during normal gait. A decrease of FO necessitates an increase of abductor muscle force to maintain normal gait, which in turn increases the joint reaction force. This effect underscores the importance of an accurate reconstruction of the femoral offset.


Hip Arthroplasty Femoral offset Patient-specific musculoskeletal modeling Muscle Moment arm Joint force 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study is based on previously published finite element models, which are derived from CT scans of 15 of our patients. The use of this numeric model has been approved by our IRB.


  1. 1.
    Pauwels PF (1973) Biomechanische Analyse und kausale Therapie der Coxa vara congenita, Schenkelhalspseudarthrose und Coxarthrose. Atlas Zur Biomech Gesunden Kranken Hüfte. Springer, Heidelberg, pp 39–269CrossRefGoogle Scholar
  2. 2.
    Bombelli R (1976) Osteoarthritis of the hip: pathogenesis and consequent therapy. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Sariali E, Klouche S, Mouttet A, Pascal-Moussellard H (2014) The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop 85:123–127. doi: 10.3109/17453674.2014.889980 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Terrier A, Levrero Florencio F, Rudiger HA (2014) Benefit of cup medialization in total hip arthroplasty is associated with femoral anatomy. Clin Orthop Relat Res 472:3159–3165. doi: 10.1007/s11999-014-3787-3 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McGrory BJ, Morrey BF, Cahalan TD et al (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg Br 77:865–869PubMedGoogle Scholar
  6. 6.
    Sakalkale DP, Sharkey PF, Eng K et al (2001) Effect of femoral component offset on polyethylene wear in total hip arthroplasty. Clin Orthop 388:125–134CrossRefGoogle Scholar
  7. 7.
    Little NJ, Busch CA, Gallagher JA et al (2009) Acetabular polyethylene wear and acetabular inclination and femoral offset. Clin Orthop 467:2895–2900. doi: 10.1007/s11999-009-0845-3 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sariali E, Mauprivez R, Khiami F et al (2012) Accuracy of the preoperative planning for cementless total hip arthroplasty. A randomised comparison between three-dimensional computerised planning and conventional templating. Orthop Traumatol Surg Res 98:151–158. doi: 10.1016/j.otsr.2011.09.023 CrossRefPubMedGoogle Scholar
  9. 9.
    Hassani H, Cherix S, Ek ET, Rudiger HA (2014) Comparisons of preoperative three-dimensional planning and surgical reconstruction in primary cementless total hip arthroplasty. J Arthroplasty 29:1273–1277. doi: 10.1016/j.arth.2013.12.033 CrossRefPubMedGoogle Scholar
  10. 10.
    Rüdiger HA, Parvex V, Terrier A (2016) Impact of the femoral head position on moment arms in total hip arthroplasty: a parametric finite element study. J Arthroplasty 31:715–720. doi: 10.1016/j.arth.2015.09.044 CrossRefPubMedGoogle Scholar
  11. 11.
    Cassidy KA, Noticewala MS, Macaulay W et al (2012) Effect of femoral offset on pain and function after total hip arthroplasty. J Arthroplasty 27:1863–1869. doi: 10.1016/j.arth.2012.05.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Mahmood SS, Mukka SS, Crnalic S et al (2016) Association between changes in global femoral offset after total hip arthroplasty and function, quality of life, and abductor muscle strength. Acta Orthop 87:36–41. doi: 10.3109/17453674.2015.1091955 CrossRefPubMedGoogle Scholar
  13. 13.
    Bjordal F, Bjorgul K (2015) The role of femoral offset and abductor lever arm in total hip arthroplasty. J Orthop Traumatol 16:325–330. doi: 10.1007/s10195-015-0358-7 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Delp SL, Loan JP, Hoy MG et al (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 37:757–767CrossRefPubMedGoogle Scholar
  15. 15.
    Terrier A, Parvex V, Rudiger HA (2016) Impact of individual anatomy on the benefit of cup medialization in total hip arthroplasty. HIP Int. doi: 10.5301/hipint.5000392 PubMedGoogle Scholar
  16. 16.
    Wu G, Siegler S, Allard P et al (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part 1: ankle, hip, and spine. J Biomech 35:543–548CrossRefPubMedGoogle Scholar
  17. 17.
    Sherman MA, Seth A, Delp SL (2013) What is a moment arm? Calculating muscle effectiveness in biomechanical models using generalized coordinates. ASME Pap. (V07BT10A052)Google Scholar
  18. 18.
    Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192. doi: 10.1113/jphysiol.1966.sp007909 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Farmer KW, Jones LC, Brownson KE et al (2010) Trochanteric bursitis after total hip arthroplasty: incidence and evaluation of response to treatment. J Arthroplasty 25:208–212. doi: 10.1016/j.arth.2009.02.008 CrossRefPubMedGoogle Scholar
  20. 20.
    Capogna BM, Shenoy K, Youm T, Stuchin SA (2017) Tendon disorders after total hip arthroplasty: evaluation and management. J Arthroplasty. doi: 10.1016/j.arth.2017.04.015 PubMedGoogle Scholar
  21. 21.
    Iorio R, Healy WL, Warren PD, Appleby D (2006) Lateral trochanteric pain following primary total hip arthroplasty. J Arthroplasty 21:233–236. doi: 10.1016/j.arth.2005.03.041 CrossRefPubMedGoogle Scholar
  22. 22.
    Sayed-Noor AS, Sjödén GO (2006) Greater trochanteric pain after total hip arthroplasty: the incidence, clinical outcome and associated factors. HIP Int 16:202–206CrossRefPubMedGoogle Scholar
  23. 23.
    Clement ND, Patrick-Patel RS, MacDonald D, Breusch SJ (2016) Total hip replacement: increasing femoral offset improves functional outcome. Arch Orthop Trauma Surg 136:1317–1323. doi: 10.1007/s00402-016-2527-4 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Meireles S, De Groote F, Reeves ND et al (2016) Knee contact forces are not altered in early knee osteoarthritis. Gait Posture 45:115–120. doi: 10.1016/j.gaitpost.2016.01.016 CrossRefPubMedGoogle Scholar
  25. 25.
    Skalshøi O, Iversen CH, Nielsen DB et al (2015) Walking patterns and hip contact forces in patients with hip dysplasia. Gait Posture 42:529–533. doi: 10.1016/j.gaitpost.2015.08.008 CrossRefPubMedGoogle Scholar
  26. 26.
    Donnelly CJ, Lloyd DG, Elliott BC, Reinbolt JA (2012) Optimizing whole-body kinematics to minimize valgus knee loading during sidestepping: implications for ACL injury risk. J Biomech 45:1491–1497. doi: 10.1016/j.jbiomech.2012.02.010 CrossRefPubMedGoogle Scholar
  27. 27.
    Reinbolt JA, Seth A, Delp SL (2011) Simulation of human movement: applications using OpenSim. pp 186–198Google Scholar
  28. 28.
    Valente G, Pitto L, Testi D et al (2014) Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS ONE 9:e112625. doi: 10.1371/journal.pone.0112625 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Myers CA, Laz PJ, Shelburne KB, Davidson BS (2014) A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations. Ann Biomed Eng 43:1098–1111. doi: 10.1007/s10439-014-1181-7 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lengsfeld M, Bassaly A, Boudriot U et al (2000) Size and direction of hip joint forces associated with various positions of the acetabulum. J Arthroplasty 15:314–320. doi: 10.1016/S0883-5403(00)90624-7 CrossRefPubMedGoogle Scholar
  31. 31.
    Amirouche F, Solitro G, Walia A (2016) No effect of femoral offset on bone implant micromotion in an experimental model. Orthop Traumatol Surg Res 102:379–385. doi: 10.1016/j.otsr.2016.01.010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hannes A. Rüdiger
    • 1
    • 2
  • Maïka Guillemin
    • 3
  • Adeliya Latypova
    • 3
  • Alexandre Terrier
    • 3
  1. 1.Department of Orthopaedics and TraumatologyCentre Hospitalier Universitaire Vaudois CHUVLausanneSwitzerland
  2. 2.Department of Orthopaedic SurgerySchulthess ClinicZurichSwitzerland
  3. 3.Laboratory of Biomechanical OrthopedicsEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations