Archives of Orthopaedic and Trauma Surgery

, Volume 137, Issue 10, pp 1435–1441 | Cite as

Influence of undersized cementless hip stems on primary stability and strain distribution

  • Andreas Fottner
  • Matthias Woiczinski
  • Manuel Kistler
  • Christian Schröder
  • Tobias F. Schmidutz
  • Volkmar Jansson
  • Florian Schmidutz
Hip Arthroplasty



Undersizing of cementless hip stems is a risk factor for aseptic loosening and early subsidence. The purpose of this study was to evaluate the effects of undersized stems and determine whether a biomechanical study can predict the clinical results.

Materials and methods

Three consecutive sizes of a clinically proven stem (CLS Spotorno) were implanted into six composite femora (size large, Sawbones®), respectively. According to the Canal Fill Index (CFI), two stems (size 11.25 and 12.5) were undersized (CFI < 80%) and one stem (size 13.75) had an appropriate size (CFI > 80%). The primary stability was evaluated by measurement of 3-dimensional (3D)-micromotions under physiological adapted load and surface strains were recorded before and after implantation to detect stress-shielding processes.


Both undersized stems revealed significantly higher micromotions in all regions compared to the appropriate stem. The highest micromotions were registered at the distal tip of the three stem sizes. The changes in surface strain did not show a significant difference between the three stem sizes, but the highest strain reduction was observed proximally indicating a tendency for stress shielding.


This study confirms the clinical assumption that undersized stem result in a significantly reduced primary stability. Furthermore, in vitro studies allow to determine the effects of undersizing and stress shielding processes.


Total hip arthroplasty Cementless Undersizing 3-Dimensional micromotion Primary stability Strain distribution 


  1. 1.
    Cherian JJ, Jauregui JJ, Banerjee S et al (2015) What host factors affect aseptic loosening after THA and TKA? Clin Orthop Relat Res 473(8):2700–2709CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Holt G, Murnaghan C, Reilly J, Meek RM (2007) The biology of aseptic osteolysis. Clin Orthop Relat Res 460:240–252PubMedGoogle Scholar
  3. 3.
    Buckwalter AE, Callaghan JJ, Liu SS et al (2006) Results of Charnley total hip arthroplasty with use of improved femoral cementing techniques. a concise follow-up, at a minimum of twenty-five years, of a previous report. J Bone Jt Surg Am 88(7):1481–1485Google Scholar
  4. 4.
    Rasquinha VJ, Ranawat CS, Dua V et al (2004) A prospective, randomized, double-blind study of smooth versus rough stems using cement fixation: minimum 5-year follow-up. J Arthroplast 19(7 Suppl 2):2–9CrossRefGoogle Scholar
  5. 5.
    Malchau H, Wang YX, Kärrholm J, Herberts P (1997) Scandinavian multicenter porous-coated anatomic total hip arthroplasty study. J Arthroplast 12:133–148CrossRefGoogle Scholar
  6. 6.
    Aldinger PR, Jung AW, Breusch SJ et al (2009) Survival of the cementless Spotorno stem in the second decade. Clin Orthop Relat Res 467(9):2297–2304CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Engh CA, Massin P (1989) Cementless total hip arthroplasty using the anatomic medullary locking stem. Results using a survivorship analysis. Clin Orthop Relat Res 249:141–158Google Scholar
  8. 8.
    Evola FR, Evola G, Graceffa A et al (2014) Performance of the CLS Spotorno uncemented stem in the third decade after implantation. Bone Jt J 96-B(4):455–461CrossRefGoogle Scholar
  9. 9.
    Hwang KT, Kim YH, Kim YS, Choi IY (2012) Total hip arthroplasty using cementless grit-blasted femoral component: a minimum 10-year follow-up study. J Arthroplast 27(8):1554–1561CrossRefGoogle Scholar
  10. 10.
    Streit MR, Innmann MM, Merle C et al (2013) Long-term (20- to 25-year) results of an uncemented tapered titanium femoral component and factors affecting survivorship. Clin Orthop Relat Res 471(10):3262–3269CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim YH, Kim VE (1993) Early migration of uncemented porous coated anatomic femoral component related to aseptic loosening. Clin Orthop Relat Res 295:146–155Google Scholar
  12. 12.
    Nam D, Sauber TJ, Barrack T et al (2015) Radiographic parameters associated with pain following total hip and surface arthroplasty. J Arthroplast 30(3):495–501CrossRefGoogle Scholar
  13. 13.
    Laine HJ, Pajamäki KJ, Moilanen T, Lehto MU (2001) The femoral canal fill of two different cementless stem designs. The accuracy of radiographs compared to computed tomographic scanning. Int Orthop 25(4):209–213CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Laine HJ, Puolakka TJ, Moilanen T et al (2000) The effects of cementless femoral stem shape and proximal surface texture on ‘fit-and-fill’ characteristics and on bone remodeling. Int Orthop 24(4):184–190CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gheduzzi S, Miles AW (2007) A review of pre-clinical testing of femoral stem subsidence and comparison with clinical data. Proc Inst Mech Eng H 221(1):39–46CrossRefPubMedGoogle Scholar
  16. 16.
    Bieger R, Ignatius A, Reichel H, Dürselen L (2013) Biomechanics of a short stem: in vitro primary stability and stress shielding of a conservative cementless hip stem. J Orthop Res 31(8):1180–1186CrossRefPubMedGoogle Scholar
  17. 17.
    Decking R, Puhl W, Simon U, Claes LE (2006) Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems. Clin Biomech 21(5):495–501CrossRefGoogle Scholar
  18. 18.
    Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surface implants. Clin Orthop 208:108–113Google Scholar
  19. 19.
    Enoksen CH, Gjerdet NR, Klaksvik J et al (2016) Deformation pattern and load transfer of an uncemented femoral stem with modular necks. An experimental study in human cadaver femurs. Clin Biomech (Bristol, Avon) 32:28–33CrossRefGoogle Scholar
  20. 20.
    Gardner MP, Chong AC, Pollock AG, Wooley PH (2010) Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng 38(3):613–620CrossRefPubMedGoogle Scholar
  21. 21.
    Heiner AD (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41(15):3282–3284CrossRefPubMedGoogle Scholar
  22. 22.
    Bergmann G, Deuretzbacher G, Heller M et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871CrossRefPubMedGoogle Scholar
  23. 23.
    Damm P, Schwachmeyer V, Dymke J et al (2013) In vivo hip joint loads during three methods of walking with forearm crutches. Clin Biomech 28(5):530–535CrossRefGoogle Scholar
  24. 24.
    Fottner A, Peter CV, Schmidutz F et al (2011) Biomechanical evaluation of different offset versions of a cementless hip prosthesis by 3-dimensional measurement of micromotions. Clin Biomech (Bristol, Avon) 26(8):830–835CrossRefGoogle Scholar
  25. 25.
    Fottner A, Schmid M, Birkenmaier C et al (2009) Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions. Clin Biomech (Bristol, Avon) 24(5):429–434CrossRefGoogle Scholar
  26. 26.
    Schmidutz F, Woiczinski M, Kistler M et al (2016) Influence of different sizes of composite femora on the biomechanical behavior of cementless hip prosthesis. Clin Biomech 41:60–65CrossRefGoogle Scholar
  27. 27.
    Görtz W, Nägerl UV, Nägerl H, Thomsen M (2002) Spatial micromovements of uncemented femoral components after torsional loads. J Biomech Eng 124(6):706–713CrossRefPubMedGoogle Scholar
  28. 28.
    Nadorf J, Thomsen M, Gantz S et al (2014) Fixation of the shorter cementless GTS™ stem: biomechanical comparison between a conventional and an innovative implant design. Arch Orthop Trauma Surg 134(5):719–726CrossRefPubMedGoogle Scholar
  29. 29.
    Pepke W, Nadorf J, Ewerbeck V et al (2014) Primary stability of the fitmore stem: biomechanical comparison. Int Orthop 38(3):483–488CrossRefPubMedGoogle Scholar
  30. 30.
    Thomsen MN, Breusch SJ, Aldinger PR et al (2002) Robotically-milled bone cavities: a comparison with hand-broaching in different types of cementless hip stems. Acta Orthop Scand 73(4):379–385CrossRefPubMedGoogle Scholar
  31. 31.
    Tullos HS, McCaskill BL, Dickey R, Davidson J (1984) Total hip arthroplasty with a low-modulus porous-coated femoral component. J Bone Jt Surg Am 66(6):888–898CrossRefGoogle Scholar
  32. 32.
    Gamble P, de Beer J, Petruccelli D, Winemaker M (2010) The accuracy of digital templating in uncemented total hip arthroplasty. J Arthroplast 25(4):529–532CrossRefGoogle Scholar
  33. 33.
    Kuroda K, Kabata T, Maeda T et al (2014) Do we need intraoperative radiographs for positioning the femoral component in total hip arthroplasty? Arch Orthop Trauma Surg 134(5):727–733CrossRefPubMedGoogle Scholar
  34. 34.
    Rivera F, Leonardi F, Evangelista A, Pierannunzii L (2016) Risk of stem undersizing with direct anterior approach for total hip arthroplasty. Hip Int 26(3):249–253CrossRefPubMedGoogle Scholar
  35. 35.
    Mayle RE, Della Valle CJ (2012) Intra-operative fractures during THA: see it before it sees us. J Bone Jt Surg Br 94(11 Suppl A):26–31CrossRefGoogle Scholar
  36. 36.
    Bühler DW, Berlemann U, Lippuner K et al (1997) Three-dimensional primary stability of cementless femoral stems. Clin Biomech 12(2):75–86CrossRefGoogle Scholar
  37. 37.
    Spotorno L, Romagnoli S, Ivaldo N et al (1993) The CLS system: theoretical concept and results. Acta Orthop Belg 59(Suppl 1):144–148PubMedGoogle Scholar
  38. 38.
    Heller MO, Kassi JP, Perka C, Duda GN (2005) Cementless stem fixation and primary stability under physiological-like loads in vitro. Biomed Tech 50(12):394–399CrossRefGoogle Scholar
  39. 39.
    Kassi JP, Heller MO, Stoeckle U et al (2005) Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro. J Biomech 38(5):1143–1154CrossRefPubMedGoogle Scholar
  40. 40.
    Floerkemeier T, Budde S, Hurschler C et al (2017) Influence of size and CCD-angle of a short stem hip arthroplasty on strain patterns of the proximal femur—an experimental study. Acta Bioeng Biomech 19(1):141–149PubMedGoogle Scholar
  41. 41.
    Bieger R, Ignatius A, Decking R et al (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech 27(2):158–164CrossRefGoogle Scholar
  42. 42.
    Gronewold J, Berner S, Olender G et al (2014) Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone. Orthop Rev (Pavia) 6(1):5211CrossRefGoogle Scholar
  43. 43.
    Kim YH, Kim JS, Cho SH (2001) Strain distribution in the proximal human femur. An in vitro comparison in the intact femur and after insertion of reference and experimental femoral stems. J Bone Jt Surg Br 83(2):295–301CrossRefGoogle Scholar
  44. 44.
    Wik TS, Enoksen C, Klaksvik J et al (2011) In vitro testing of the deformation pattern and initial stability of a cementless stem coupled to an experimental femoral head, with increased offset and altered femoral neck angles. Proc Inst Mech Eng H 225(8):797–808CrossRefPubMedGoogle Scholar
  45. 45.
    Wolf O, Mattsson P, Milbrink J et al (2010) Periprosthetic bone mineral density and fixation of the uncemented CLS stem related to different weight bearing regimes: a randomized study using DXA and RSA in 38 patients followed for 5 years. Acta Orthop 81(3):286–291CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Salemyr M, Muren O, Ahl T et al (2015) Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty. Acta Orthop 86(6):659–666CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sköldenberg OG, Bodén HS, Salemyr MO et al (2006) Periprosthetic proximal bone loss after uncemented hip arthroplasty is related to stem size: DXA measurements in 138 patients followed for 2–7 years. Acta Orthop 77(3):386–392CrossRefPubMedGoogle Scholar
  48. 48.
    Dorr LD, Faugere MC, Mackel AM et al (1993) Structural and cellular assessment of bone quality of proximal femur. Bone 14(3):231–242CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery, Physical Medicine and RehabilitationUniversity Hospital of Munich (LMU)MunichGermany
  2. 2.Laboratory for Biomechanics and Experimental Orthopedics, Grosshadern Medical CenterUniversity of Munich (LMU)MunichGermany
  3. 3.Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  4. 4.BG Trauma CenterEberhard Karls University TübingenTuebingenGermany

Personalised recommendations