Archives of Orthopaedic and Trauma Surgery

, Volume 137, Issue 10, pp 1349–1355 | Cite as

Biomechanical study of novel unilateral C1 posterior arch screws and C2 laminar screws combined with an ipsilateral crossed C1–C2 pedicle screw–rod fixation for atlantoaxial instability

  • Kai Shen
  • Zhongliang Deng
  • Junsong Yang
  • Chao Liu
  • Ranxi Zhang
Orthopaedic Surgery



Current surgical methods to treat atlantoaxial instability pose potential risks to the surrounding blood vessels and nerves of operative approach. Therefore, more secure and highly effective methods are expected. This study sought to assess the biomechanical efficacy of a novel unilateral double screw–rod fixation system by comparing with traditional and emerging fixation methods in cadaveric models.

Materials and methods

Ligamentous cervical spines (C0–C7) from ten fresh cadaveric specimens were used to complete range of motion (ROM) test in their intact condition (control group), destabilization, and stabilization after different fixations, including unilateral C1–C2 pedicle screws (PS) with a screw–rod system (Group A), bilateral C1–C2 PS with screw–rod systems (Group B), unilateral C1 posterior arch screws (PAS) and C2 laminar screws (LS) combined with an ipsilateral paralleled C1–C2 PS–rod (Group C), and unilateral C1 PAS and C2 LS combined with an ipsilateral crossed C1–C2 PS–rod (Group D). After that, pullout strength test was performed between PS and PAS using ten isolated atlas vertebras.


All fixation groups reduced flexibility in all directions compared with both control group and destabilization group. Furthermore, comparisons among different fixation groups showed that bilateral C1–C2 PS–rod (Group B), unilateral C1 PAS + C2 LS combined with an ipsilateral paralleled C1–C2 PS–rod (Group C) and unilateral C1 PAS + C2 LS combined with an ipsilateral crossed C1–C2 PS–rod (Group D) could provide a better stability, respectively, in all directions than unilateral C1–C2 PS–rod (Group A). However, no statistical significance was observed among Groups B, C, and D. Data from pullout strength test showed that both C1 PS (585 ± 53 N) and PAS (463 ± 49 N) could provide high fixed strength, although PS was better (P = 0.009).


The surgical technique of unilateral C1 PAS + C2 LS combined with a ipsilateral crossed C1–C2 PS–rod fixation could provide a better stability than the traditional unilateral PS–rod fixation and a same stability as bilateral PS–rod fixation, but with less risk of neurovascular injury. Therefore, this new technique may provide novel insight for an alternative of atlantoaxial instability treatment.


Atlantoaxial instability Atlantoaxial fixation Unilateral Biomechanics C1 posterior arch screw Laminar screw 


  1. 1.
    Bisson E, Schiffern A, Daubs MD, Brodke DS, Patel AA (2010) Combined occipital-cervical and atlantoaxial disassociation without neurologic injury case report and review of the literature. Spine 35:E316–E321. doi:10.1097/BRS.0b013e3181c41d2c CrossRefPubMedGoogle Scholar
  2. 2.
    Nightingale RW, Winkelstein BA, Knaub KE, Richardson WJ, Luck JF, Myers BS (2002) Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension. J Biomech 35:725–732CrossRefPubMedGoogle Scholar
  3. 3.
    Gautschi OP, Payer M, Corniola MV, Smoll NR, Schaller K, Tessitore E (2014) Clinically relevant complications related to posterior atlanto-axial fixation in atlanto-axial instability and their management. Clin Neurol Neurosurg 123:131–135. doi:10.1016/j.clineuro.2014.05.020 (Epub 2014 Jun 4) CrossRefPubMedGoogle Scholar
  4. 4.
    Tessitore E, Bartoli A, Schaller K, Payer M (2011) Accuracy of freehand uoroscopy-guided placement of C1 lateral mass and C2 isthmic screws in atlanto-axial instability. Acta Neurochir (Wien) 153:1417–1425. doi:10.1007/s00701-011-1039-9 (discussion 1425. Epub 2011 May 21) CrossRefGoogle Scholar
  5. 5.
    Grob D, Crisco JJ III, Panjabi MM, Wang P, Dvorak J (1992) Biomechanical evaluation of four different posterior atlantoaxial fixation techniques. Spine 17:480–490CrossRefPubMedGoogle Scholar
  6. 6.
    Henriques T, Cunningham BW, Olerud C, Shimamoto N, Lee GA, Larsson S, McAfee PA (2000) Biomechanical comparison of five different atlantoaxial posterior fixation techniques. Spine 25:2877–2883CrossRefPubMedGoogle Scholar
  7. 7.
    Kandziora F, Kerschbaumer F, Starker M, Mittlmeier T (2000) Biomechanical assessment of transoral plate fixation for atlantoaxial instability. Spine 25:1555–1561CrossRefPubMedGoogle Scholar
  8. 8.
    Kandziora F, Pflugmacher R, Ludwig K, Duda G, Mittlmeier T, Haas NP (2002) Biomechanical comparison of four anterior atlantoaxial plate systems. J Neurosurg 96:313–320PubMedGoogle Scholar
  9. 9.
    Huang DG, Hao DJ, He BR, Wu QN, Liu TJ, Wang XD, Guo H, Fang XY (2015) Posterior atlantoaxial fixation: a review of all techniques. Spine J 15:2271–2281CrossRefPubMedGoogle Scholar
  10. 10.
    Harms J, Melcher RP (2001) Posterior C1–C2 fusion with polyaxial screw and rod fixation. Spine 26:2467–2471CrossRefPubMedGoogle Scholar
  11. 11.
    Li S, Ni B, Xie N, Wang M, Guo X, Zhang F, Wang J, Zhao W (2010) Biomechanical evaluation of an atlantoaxial lateral mass fusion cage with C1–C2 pedicle fixation. Spine 35:E624–E632. doi:10.1097/BRS.0b013e3181cf412b CrossRefPubMedGoogle Scholar
  12. 12.
    Ferguson RL, Tencer AF, Woodard P, Allen BL Jr (1988) Biomechanical comparisons of spinal fracture models and the stabilizing effects of posterior instrumentations. Spine 13:453–460CrossRefPubMedGoogle Scholar
  13. 13.
    Dickman CA, Sonntag VK (1998) Posterior C1–C2 transarticular screw fixation for atlantoaxial arthrodesis. Neurosurgery 43:275–280CrossRefPubMedGoogle Scholar
  14. 14.
    Madawi A, Solanki G, Casey AT, Crockard HA (1997) Variation of the groove in the axis vertebra for the vertebral artery: implications for instrumentation. J Bone Joint Surg Br 79:820–823CrossRefPubMedGoogle Scholar
  15. 15.
    Abumi K, Takada T, Shono Y, Kaneda K, Fujiya M (1999) Posterior occipitocervical reconstruction using cervical pedicle screws and plate-rod systems. Spine 24:1425–1434CrossRefPubMedGoogle Scholar
  16. 16.
    Kuroki H, Rengachary SS, Goel VK, Holekamp SA, Pitkanen V, Ebraheim NA (2005) Biomechanical comparison of two stabilization techniques of the atlantoaxial joints: transarticular screw fixation versus screw and rod fixation. Neurosurgery 56:151–159 (discussion 151–159) PubMedGoogle Scholar
  17. 17.
    Claybrooks R, Kayanja M, Milks R, Benzel E (2007) Atlantoaxial fusion: a biomechanical analysis of two C1–C2 fusion techniques. Spine J 7:682–688CrossRefPubMedGoogle Scholar
  18. 18.
    Pan J, Li L, Qian L, Tan J, Sun G, Li X (2010) C1 lateral mass screw insertion with protection of C1-C2 venous sinus. Spine 35:E1133–E1136. doi:10.1097/BRS.0b013e3181e215ff CrossRefPubMedGoogle Scholar
  19. 19.
    Aota Y, Honda A, Uesugi M, Yamashita T, Baba N, Niwa T, Saito T (2006) Vertebral artery injury in C-1 lateral mass screw fixation. Case illustration. J Neurosurg Spine 5:554CrossRefPubMedGoogle Scholar
  20. 20.
    Rocha R, Safavi-Abbasi S, Reis C, Theodore N, Bambakidis N, de Oliveira E, Sonntag VK, Crawford NR (2007) Working area, safety zones, and angles of approach for posterior C-1 lateral mass screw placement: a quantitative anatomical and morphometric evaluation. J Neurosurg Spine 6:247–254CrossRefPubMedGoogle Scholar
  21. 21.
    Paramore CG, Dickman CA, Sonntag VKH (1996) The anatomical suitability of the C1–C2 complex for transarticular screw fixation. J Neurosurg 85:221–224CrossRefPubMedGoogle Scholar
  22. 22.
    Fujii T, Oda T, Kato Y, Fujita S, Tanaka M (2000) Accuracy of atlantoaxial transartivular screw fixaion. Spine 25:1760–1764CrossRefGoogle Scholar
  23. 23.
    Lehman RA, Dmitriev AE, Helgeson MD, Sasso RC, Kuklo TR, Riew KD (2008) Salvage of C2 pedicle and pars screws using the intralaminar technique: a biomechanical analysis. Spine 33:960–965. doi:10.1097/BRS.0b013e31816c915b CrossRefPubMedGoogle Scholar
  24. 24.
    Miyakoshi N, Hongo M, Kobayashi T, Suzuki T, Abe E, Shimada Y (2014) Comparison between bilateral C2 pedicle screwing and unilateral C2 pedicle screwing, combined with contralateral C2 laminar screwing, for atlantoaxial posterior fixation. Asian Spine J 8:777–785. doi:10.4184/asj.2014.8.6.777 (Epub 2014 Dec 17) CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Meyer D, Meyer F, Kretschmer T, Börm W (2012) Translaminar screws of the axis–an alternative technique for rigid screw fixation in upper cervical spine instability. Neurosurg Rev 35:255–261. doi:10.1007/s10143-011-0358-x (discussion 261. Epub 2011 Nov 17) CrossRefPubMedGoogle Scholar
  26. 26.
    Floyd T, Grob D (2000) Translaminar screws in the atlas. Spine 25:2913–2915CrossRefPubMedGoogle Scholar
  27. 27.
    Donnellan MB, Sergides IG, Sears WR (2008) Atlantoaxial stabilization using multiaxial C-1 posterior arch screws. J Neurosurg Spine 9:522–527. doi:10.3171/SPI.2008.10.08294 CrossRefPubMedGoogle Scholar
  28. 28.
    Jin GX, Wang H (2016) Unilateral C-1 posterior arch screws and C-2 laminar screws combined with a 1-side C1–2 pedicle screw system as salvage fixation for atlantoaxial instability. J Neurosurg Spine 24:315–320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kai Shen
    • 1
    • 2
  • Zhongliang Deng
    • 1
  • Junsong Yang
    • 3
  • Chao Liu
    • 1
  • Ranxi Zhang
    • 1
  1. 1.Department of Orthopedics, The Second Affiliated HospitalChongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of OrthopedicsChongqing General HospitalChongqingPeople’s Republic of China
  3. 3.Department of Spinal Surgery, Honghui HospitalMedical College of Xi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations