Archives of Orthopaedic and Trauma Surgery

, Volume 137, Issue 8, pp 1087–1095 | Cite as

Surgical treatment of patellar instability: clinical and radiological outcome after medial patellofemoral ligament reconstruction and tibial tuberosity medialisation

  • Stefan LobnerEmail author
  • Christine Krauss
  • Frank Reichwein
  • Thilo Patzer
  • Wolfgang Nebelung
  • Arne J. Venjakob
Arthroscopy and Sports Medicine



The aim of this retrospective study was to analyse clinical and radiological outcome after medial patellofemoral ligament reconstruction (MPFLR) and tibial tuberosity medialisation (TTM) in patients with recurrent patellar instability.

Materials and methods

Thirty-five patients were included between 2008 and 2012. According to defined criteria such as tibial tuberosity-trochlear groove (TTTG) distance, hyperpression on the lateral patella facet and lateral retropatellar cartilage damage either MPFLR (group A) or TTM (group B) was performed: 18 patients underwent TTM, the other 17 patients underwent MPFLR. At a mean of 25.4 ± 9.7 (group A) and 35.2 ± 17.6 months (group B) patients were clinically and radiologically reviewed. Validated knee scores such as Kujala, Lysholm and Tegner score were evaluated.


In both groups one patient reported of a non-traumatic patellar redislocation. Patients who underwent MPFLR (group A) had less pain postoperatively during activity according to the Visual Analogue Scale (group A: 2.0 ± 2.1 points, group B: 3.9 ± 2.3 points). Retropatellar cartilage damage increased in group B from grade 1 (range: 1–3) preoperatively to grade 2 (range 1–3) postoperatively (p > 0.05). All other clinically evaluated items, as well as the applied knee scoring systems, indicated no significant difference (p > 0.05) and displayed good to excellent results.


MPFLR and TTM leed to good clinical results despite its own indications. For this reason—in selected cases—TTM may still be a suitable procedure for surgical treatment of patellar instability. However, patients treated by TTM (group B) revealed an increased retropatellar cartilage damage as well as significantly more pain during activity.


Patellar instability Recurrent patellar dislocation MPFL reconstruction Tibial tuberosity transfer 


Compliance with ethical standards

Conflict of interest

Author Stefan Lobner, Author Christine Krauss, Author Frank Reichwein, Author Thilo Patzer, Author Wolfgang Nebelung, and Author Arne J. Venjakob declare that they have no conflict of interest.


  1. 1.
    Atkin DM, Fithian DC, Marangi KS et al (2000) Characteristics of patients with primary acute lateral patellar dislocation and their recovery within the first 6 months of injury. Am J Sports Med 28:472–479PubMedGoogle Scholar
  2. 2.
    Waterman BR, Belmont PJ, Owens BD (2012) Patellar dislocation in the United States: role of sex, age, race, and athletic participation. J Knee Surg 25:51–57CrossRefPubMedGoogle Scholar
  3. 3.
    Mehta VM, Inoue M, Nomura E, Fithian DC (2007) An algorithm guiding the evaluation and treatment of acute primary patellar dislocations. Sports Med Arthrosc Rev 15:78–81. doi: 10.1097/JSA.0b013e318042b695 CrossRefGoogle Scholar
  4. 4.
    Hawkins RJ, Bell RH, Anisette G (1986) Acute patellar dislocations. The natural history. Am J Sports Med 14:117–120CrossRefPubMedGoogle Scholar
  5. 5.
    Petri M, Liodakis E, Hofmeister M et al (2013) Operative vs conservative treatment of traumatic patellar dislocation: results of a prospective randomized controlled clinical trial. Arch Orthop Trauma Surg 133:209–213. doi: 10.1007/s00402-012-1639-8 CrossRefPubMedGoogle Scholar
  6. 6.
    Mäenpää H, Huhtala H, Lehto MU (1997) Recurrence after patellar dislocation. Redislocation in 37/75 patients followed for 6–24 years. Acta Orthop Scand 68:424–426CrossRefPubMedGoogle Scholar
  7. 7.
    Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc Rev 15:48–56. doi: 10.1097/JSA.0b013e318053eb74 CrossRefGoogle Scholar
  8. 8.
    Senavongse W, Amis AA (2005) The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability: a biomechanical study in vitro. J Bone Joint Surg Br 87:577–582. doi: 10.1302/0301-620X.87B4.14768 CrossRefPubMedGoogle Scholar
  9. 9.
    Rhee S-J, Pavlou G, Oakley J et al (2012) Modern management of patellar instability. Int Orthop 36:2447–2456. doi: 10.1007/s00264-012-1669-4 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ries Z, Bollier M (2015) Patellofemoral instability in active adolescents. J Knee Surg 28:265–277. doi: 10.1055/s-0035-1549017 CrossRefPubMedGoogle Scholar
  11. 11.
    Steensen RN, Bentley JC, Trinh TQ et al (2015) The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med. doi: 10.1177/0363546514563904 PubMedGoogle Scholar
  12. 12.
    Frosch K-H, Schmeling A (2016) A new classification system of patellar instability and patellar maltracking. Arch Orthop Trauma Surg 136:485–497. doi: 10.1007/s00402-015-2381-9 CrossRefPubMedGoogle Scholar
  13. 13.
    Koh JL, Stewart C (2015) Patellar instability. Orthop Clin North Am 46:147–157. doi: 10.1016/j.ocl.2014.09.011 CrossRefPubMedGoogle Scholar
  14. 14.
    Alaia MJ, Cohn RM, Strauss EJ (2014) Patellar instability. Bull Hosp Jt Dis 2013(72):6–17Google Scholar
  15. 15.
    Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43–B:752–757Google Scholar
  16. 16.
    Cox JS (1982) Evaluation of the Roux-Elmslie-Trillat procedure for knee extensor realignment. Am J Sports Med 10:303–310CrossRefPubMedGoogle Scholar
  17. 17.
    Trillat A, Dejour H, Couette A (1964) Diagnosis and treatment of recurrent dislocations of the patella. Rev Chir Orthopédique Réparatrice Appar Mot 50:813–824Google Scholar
  18. 18.
    Fairbank HAT (1937) Internal derangement of the knee in children and adolescents. Proc R Soc Med 30:427–432PubMedCentralGoogle Scholar
  19. 19.
    Sheehan FT, Derasari A, Fine KM et al (2010) Q-angle and J-sign: indicative of maltracking subgroups in patellofemoral pain. Clin Orthop 468:266–275. doi: 10.1007/s11999-009-0880-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Kujala UM, Jaakkola LH, Koskinen SK et al (1993) Scoring of patellofemoral disorders. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 9:159–163CrossRefGoogle Scholar
  21. 21.
    Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10:150–154. doi: 10.1177/036354658201000306 CrossRefPubMedGoogle Scholar
  22. 22.
    Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198(198):43–49. doi: 10.1097/00003086-198509000-00007 Google Scholar
  23. 23.
    Dandy DJ (1996) Chronic patellofemoral instability. J Bone Joint Surg Br 78:328–335PubMedGoogle Scholar
  24. 24.
    Carlsson AM (1983) Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain 16:87–101CrossRefPubMedGoogle Scholar
  25. 25.
    Höher J, Münster A, Klein J et al (1995) Validation and application of a subjective knee questionnaire. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 3:26–33CrossRefGoogle Scholar
  26. 26.
    Potter HG, Linklater JM, Allen AA et al (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 80:1276–1284CrossRefPubMedGoogle Scholar
  27. 27.
    Suh JS, Lee SH, Jeong EK, Kim DJ (2001) Magnetic resonance imaging of articular cartilage. Eur Radiol 11:2015–2025. doi: 10.1007/s003300100911 CrossRefPubMedGoogle Scholar
  28. 28.
    Schoettle PB, Zanetti M, Seifert B et al (2006) The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13:26–31. doi: 10.1016/j.knee.2005.06.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Pandit S, Frampton C, Stoddart J, Lynskey T (2011) Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop 35:1799–1803. doi: 10.1007/s00264-011-1240-8 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pfirrmann CW, Zanetti M, Romero J, Hodler J (2000) Femoral trochlear dysplasia: MR findings. Radiology 216:858–864. doi: 10.1148/radiology.216.3.r00se38858 CrossRefPubMedGoogle Scholar
  31. 31.
    Dejour H, Walch G, Neyret P, Adeleine P (1990) Dysplasia of the femoral trochlea. Rev Chir Orthopédique Réparatrice Appar Mot 76:45–54Google Scholar
  32. 32.
    Caton J (1989) Method of measuring the height of the patella. Acta Orthop Belg 55:385–386PubMedGoogle Scholar
  33. 33.
    Caton J, Deschamps G, Chambat P et al (1982) Patella infera. Apropos of 128 cases. Rev Chir Orthopédique Réparatrice Appar Mot 68:317–325Google Scholar
  34. 34.
    Caton J, Mironneau A, Walch G et al (1990) Idiopathic high patella in adolescents. Apropos of 61 surgical cases. Rev Chir Orthopédique Réparatrice Appar Mot 76:253–260Google Scholar
  35. 35.
    Haver AV, Roo KD, Beule MD et al (2015) The effect of trochlear dysplasia on patellofemoral biomechanics a cadaveric study with simulated trochlear deformities. Am J Sports Med 43:1354–1361. doi: 10.1177/0363546515572143 CrossRefPubMedGoogle Scholar
  36. 36.
    Becher C, Kley K, Lobenhoffer P et al (2014) Dynamic versus static reconstruction of the medial patellofemoral ligament for recurrent lateral patellar dislocation. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:2452–2457. doi: 10.1007/s00167-014-3020-7 CrossRefGoogle Scholar
  37. 37.
    Lippacher S, Dreyhaupt J, Williams SRM et al (2014) Reconstruction of the medial patellofemoral ligament: clinical outcomes and return to sports. Am J Sports Med 42:1661–1668. doi: 10.1177/0363546514529640 CrossRefPubMedGoogle Scholar
  38. 38.
    Krishna Kumar M, Renganathan S, Joseph CJ et al (2014) Medial patellofemoral ligament reconstruction in patellar instability. Indian J Orthop 48:501–505. doi: 10.4103/0019-5413.139864 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Song SY, Kim IS, Chang HG et al (2014) Anatomic medial patellofemoral ligament reconstruction using patellar suture anchor fixation for recurrent patellar instability. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:2431–2437. doi: 10.1007/s00167-013-2730-6 CrossRefGoogle Scholar
  40. 40.
    Koëter S, Diks MJF, Anderson PG, Wymenga AB (2007) A modified tibial tubercle osteotomy for patellar maltracking: results at two years. J Bone Joint Surg Br 89:180–185. doi: 10.1302/0301-620X.89B2.18358 CrossRefPubMedGoogle Scholar
  41. 41.
    Marcacci M, Zaffagnini S, Lo Presti M et al (2004) Treatment of chronic patellar dislocation with a modified Elmslie-Trillat procedure. Arch Orthop Trauma Surg 124:250–257. doi: 10.1007/s00402-003-0511-2 CrossRefPubMedGoogle Scholar
  42. 42.
    Endres S, Wilke A (2011) A 10 year follow-up study after Roux-Elmslie-Trillat treatment for cases of patellar instability. BMC Musculoskelet Disord 12:48. doi: 10.1186/1471-2474-12-48 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Barber FA, McGarry JE (2008) Elmslie-Trillat procedure for the treatment of recurrent patellar instability. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 24:77–81. doi: 10.1016/j.arthro.2007.07.028 CrossRefGoogle Scholar
  44. 44.
    Farr S, Huyer D, Sadoghi P et al (2014) Prevalence of osteoarthritis and clinical results after the Elmslie-Trillat procedure: a retrospective long-term follow-up. Int Orthop 38:61–66. doi: 10.1007/s00264-013-2083-2 CrossRefPubMedGoogle Scholar
  45. 45.
    Kuroda R, Kambic H, Valdevit A, Andrish JT (2001) Articular cartilage contact pressure after tibial tuberosity transfer a cadaveric study. Am J Sports Med 29:403–409PubMedGoogle Scholar
  46. 46.
    Mani S, Kirkpatrick MS, Saranathan A et al (2011) Tibial tuberosity osteotomy for patellofemoral realignment alters tibiofemoral kinematics. Am J Sports Med 39:1024–1031. doi: 10.1177/0363546510390188 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Saranathan A, Kirkpatrick MS, Mani S et al (2012) The effect of tibial tuberosity realignment procedures on the patellofemoral pressure distribution. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:2054–2061. doi: 10.1007/s00167-011-1802-8 CrossRefGoogle Scholar
  48. 48.
    Stephen JM, Lumpaopong P, Dodds AL et al (2015) The effect of tibial tuberosity medialization and lateralization on patellofemoral joint kinematics, contact mechanics, and stability. Am J Sports Med 43:186–194. doi: 10.1177/0363546514554553 CrossRefPubMedGoogle Scholar
  49. 49.
    Nelitz M, Lippacher S, Reichel H, Dornacher D (2014) Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:120–127. doi: 10.1007/s00167-012-2321-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Stefan Lobner
    • 1
    • 3
    Email author
  • Christine Krauss
    • 2
    • 3
  • Frank Reichwein
    • 3
  • Thilo Patzer
    • 4
  • Wolfgang Nebelung
    • 3
  • Arne J. Venjakob
    • 3
  1. 1.Department of Orthopaedics, Trauma Surgery and Sports MedicineJohanna-Etienne Hospital NeussNeussGermany
  2. 2.Sports Clinic of StuttgartStuttgartGermany
  3. 3.Department of Rheumatology and ArthroscopyMarienkrankenhaus Duesseldorf-KaiserswerthDuesseldorfGermany
  4. 4.Department of OrthopaedicsUniversity Hospital of DuesseldorfDuesseldorfGermany

Personalised recommendations