Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 136, Issue 4, pp 585–592 | Cite as

Systemic antibiotic therapy does not significantly improve outcome in a rat model of implant-associated osteomyelitis induced by Methicillin susceptible Staphylococcus aureus

  • Christian Fölsch
  • Maike Federmann
  • Stefan Lakemeier
  • Klaus D. Kuehn
  • Clemens Kittinger
  • Martina Kerwat
  • Susanne Fuchs-Winkelmann
  • Jürgen RJ Paletta
  • Philip P. RoesslerEmail author
Knee Revision Surgery
  • 506 Downloads

Abstract

Introduction

Treatment of implant-associated osteomyelitis regularly involves the use of systemic antibiotics in addition to surgical intervention. However, it remains unclear if perioperative systemic application of bactericide substances can improve overall outcome in models of severe intramedullary infection. The present study investigated the use of systemic gentamicin in addition to a controlled local release from a highly lipophilic gentamicinpalmitate compound while the previous study showed efficacy of sole antibiotic implant-coating.

Methods

Forty male Sprague–Dawley rats were divided into two groups receiving an intramedullary femoral injection of 102 CFU of a common methicillin susceptible Staphylococcus aureus strain (MSSA Rosenbach). Group I received an uncoated implant whereas group II received a coated implant. All animals received a single shot intraperitoneal application of gentamicinsulfate directly after wound closure while the historical control group III (n = 20) had no antibiotic treatment at all. Animals were observed for 28 and 42 days. Serum haptoglobin and relative weight gain were assessed as well as roll over cultures of explanted femur nails and histological scores of periprosthetic infection in dissected femora.

Results

Systemic application of gentamicin combined with antibiotic-coated implant did not further reduce bacterial growth significantly compared with systemic or local antibiotic application alone. Combined local and systemic therapy reduced serum haptoglobin significantly after day 7, 28 and 42 whereas systemic application alone did not compare to controls.

Conclusions

Systemic perioperative and implant-associated application of antibiotics were both comparably effective to treat implant-associated infections whereas the combined antibiotic therapy further reduced systemic signs of infection time dependent.

Keywords

Osteomyelitis Rat model Gentamicinpalmitate Staphylococcus aureus Systemic antibiotics Gentamicinsulfate 

Notes

Acknowledgments

The present study was supported by Synthes GmbH, Umkirch, Germany. The authors thank Mr. Guido Schemken and his staff at the Central Animal Housing Facility in Marburg as well as Prof. Dr. Markus Schofer for their kind support in performing this study.

Compliance with ethical standards

Conflict of interest

All authors declare that there is no conflict of interest.

References

  1. 1.
    Lucke M, Wildemann B, Sadoni S et al (2005) Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone 36:770–778. doi: 10.1016/j.bone.2005.01.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Cavanaugh DL, Berry J, Yarboro SR, Dahners LE (2009) Better prophylaxis against surgical site infection with local as well as systemic antibiotics. An in vivo study. J Bone Joint Surg Am 91:1907–1912. doi: 10.2106/JBJS.G.01237 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ofluoglu EA, Bulent E, Derya AM et al (2012) Efficiency of antibiotic-loaded polymethylmethacrylate rods for treatment of the implant-related infections in rat spine. J Spinal Disord Tech 25:E48–E52. doi: 10.1097/BSD.0b013e3182425b93 CrossRefPubMedGoogle Scholar
  4. 4.
    Overstreet D, McLaren A, Calara F et al (2015) Local gentamicin delivery from resorbable viscous hydrogels is therapeutically effective. Clin Orthop Relat Res 473:337–347. doi: 10.1007/s11999-014-3935-9 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Peng K-T, Chen C-F, Chu I-M et al (2010) Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 31:5227–5236. doi: 10.1016/j.biomaterials.2010.03.027 CrossRefPubMedGoogle Scholar
  6. 6.
    Cashman JD, Jackson JK, Mugabe C et al (2013) The use of tissue sealants to deliver antibiotics to an orthopaedic surgical site with a titanium implant. J Orthop Sci 18:165–174. doi: 10.1007/s00776-012-0325-6 CrossRefPubMedGoogle Scholar
  7. 7.
    Schmidmaier G, Lucke M, Wildemann B et al (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(Suppl 2):S105–S112. doi: 10.1016/j.injury.2006.04.016 CrossRefPubMedGoogle Scholar
  8. 8.
    Lucke M, Schmidmaier G, Sadoni S et al (2003) A new model of implant-related osteomyelitis in rats. J Biomed Mater Res B Appl Biomater 67:593–602. doi: 10.1002/jbm.b.10051 CrossRefPubMedGoogle Scholar
  9. 9.
    Fölsch C, Federmann M, Kuehn KD et al (2014) Coating with a novel gentamicinpalmitate formulation prevents implant-associated osteomyelitis induced by methicillin-susceptible Staphylococcus aureus in a rat model. Int Orthop. doi: 10.1007/s00264-014-2582-9 PubMedGoogle Scholar
  10. 10.
    Giavaresi G, Meani E, Sartori M et al (2013) Efficacy of antibacterial-loaded coating in an in vivo model of acutely highly contaminated implant. Int Orthop 38:1505–1512. doi: 10.1007/s00264-013-2237-2 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Drago L, Boot W, Dimas K et al (2014) Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clin Orthop Relat Res 472:3311–3323. doi: 10.1007/s11999-014-3558-1 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mader JT, Stevens CM, Stevens JH et al (2002) Treatment of experimental osteomyelitis with a fibrin sealant antibiotic implant. Clin Orthop Relat Res 403:58–72CrossRefPubMedGoogle Scholar
  13. 13.
    Stall AC, Becker E, Ludwig SC et al (2009) Reduction of postoperative spinal implant infection using gentamicin microspheres. Spine (Phila Pa 1976) 34:479–483. doi: 10.1097/BRS.0b013e318197e96c CrossRefGoogle Scholar
  14. 14.
    McLaren A, Giers MB, Fraser J et al (2014) Antimicrobial distribution from local delivery depends on dose: a pilot study with MRI. Clin Orthop Relat Res 472:3324–3329. doi: 10.1007/s11999-014-3493-1 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Craig J, Fuchs T, Jenks M et al (2014) Systematic review and meta-analysis of the additional benefit of local prophylactic antibiotic therapy for infection rates in open tibia fractures treated with intramedullary nailing. Int Orthop 38:1025–1030. doi: 10.1007/s00264-014-2293-2 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lucke M, Schmidmaier G, Sadoni S et al (2003) Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 32:521–531CrossRefPubMedGoogle Scholar
  17. 17.
    Chang Y, Tai C-L, Hsieh P-H, Ueng SWN (2013) Gentamicin in bone cement: a potentially more effective prophylactic measure of infectionin joint arthroplasty. Bone Joint Res 2:220–226. doi: 10.1302/2046-3758.210.2000188 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hallström H, Persson GR, Lindgren S et al (2012) Systemic antibiotics and debridement of peri-implant mucositis. A randomized clinical trial. J Clin Periodontol 39:574–581. doi: 10.1111/j.1600-051X.2012.01884.x CrossRefPubMedGoogle Scholar
  19. 19.
    Cowan ST, Shaw C, Williams RE (1954) Type strain for Staphylococcus aureus Rosenbach. J Gen Microbiol 10:174–176CrossRefPubMedGoogle Scholar
  20. 20.
    Giffen PS, Turton J, Andrews CM et al (2003) Markers of experimental acute inflammation in the Wistar Han rat with particular reference to haptoglobin and C-reactive protein. Arch Toxicol 77:392–402. doi: 10.1007/s00204-003-0458-7 CrossRefPubMedGoogle Scholar
  21. 21.
    Laurent F, Bignon A, Goldnadel J et al (2008) A new concept of gentamicin loaded HAP/TCP bone substitute for prophylactic action: in vitro release validation. J Mater Sci Mater Med 19:947–951. doi: 10.1007/s10856-007-0163-9 CrossRefPubMedGoogle Scholar
  22. 22.
    Fleiter N, Walter G, Bösebeck H et al (2014) Clinical use and safety of a novel gentamicin-releasing resorbable bone graft substitute in the treatment of osteomyelitis/osteitis. Bone Joint Res 3:223–229. doi: 10.1302/2046-3758.37.2000301 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Viguier E, Bignon A, Laurent F et al (2011) A new concept of gentamicin loaded HAP/TCP bone substitute for prophylactic action: in vivo pharmacokinetic study. J Mater Sci Mater Med 22:879–886. doi: 10.1007/s10856-011-4279-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Kittinger C, Marth E, Windhager R et al (2011) Antimicrobial activity of gentamicin palmitate against high concentrations of Staphylococcus aureus. J Mater Sci Mater Med 22:1447–1453. doi: 10.1007/s10856-011-4333-4 CrossRefPubMedGoogle Scholar
  25. 25.
    Diefenbeck M, Mückley T, Hofmann GO (2006) Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury 37:S95–S104. doi: 10.1016/j.injury.2006.04.015 CrossRefPubMedGoogle Scholar
  26. 26.
    Bormann N, Schwabe P, Smith MD, Wildemann B (2014) Analysis of parameters influencing the release of antibiotics mixed with bone grafting material using a reliable mixing procedure. Bone 59:162–172CrossRefPubMedGoogle Scholar
  27. 27.
    Liu C, Kakis A, Nichols A, Ries MD, Vail TP, Bozic KJ (2014) Targeteduse of vancomycin as perioperative prophylaxis reduces periprosthetic joint infection in revision TKA. Clin Orthop Relat Res 472:227–231CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA (2016) Periprosthetic joint infection. Lancet 387(10016):386–394CrossRefPubMedGoogle Scholar
  29. 29.
    Jiranek WA, Waligora AC, Hess SR, Golladay GL (2015) Surgicl treatment of prosthetic joint infections of te hip and knee: changing paradigms? J Arthroplasty 30:912–918CrossRefPubMedGoogle Scholar
  30. 30.
    Alijanipour P, Heller S, Parvizi J (2014) Prevention of periprosthetic joint infection: what are the effective strategies? J Knee Surg 27:251–258CrossRefPubMedGoogle Scholar
  31. 31.
    Thelwall S, Harrington P, Sheridan E, Lamagni T (2015) Impact of obesity on the risk of wound infection following surgery: results from a nationwide prospective multicentre cohort study in England. Clin Microbiol Infect. doi: 10.1016/j.cmi.2015.07.003 PubMedGoogle Scholar
  32. 32.
    Shahi A, Parvizi J (2015) Prevention of periprosthetic joint infection. Arch Bone Jt Surg 3:72–81PubMedPubMedCentralGoogle Scholar
  33. 33.
    Mortazavi SM, Vegari D, Ho A, Zmistowski B, Parvizi J (2011) Two-stage exchange arthroplasty for infected total knee arthroplasty: predictors of failure. Clin Orthop Relat Res 469:3049–3054CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Parvizi J, Gehrke T, Chen AF (2013) Proceedings of the international consensus on periprosthetic joint infection. Bone Joint J 95:1450–1452CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christian Fölsch
    • 1
    • 2
  • Maike Federmann
    • 2
  • Stefan Lakemeier
    • 4
  • Klaus D. Kuehn
    • 5
  • Clemens Kittinger
    • 6
  • Martina Kerwat
    • 7
  • Susanne Fuchs-Winkelmann
    • 2
  • Jürgen RJ Paletta
    • 2
  • Philip P. Roessler
    • 2
    • 3
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity Hospital GießenMarburgGermany
  2. 2.Department of Orthopedics and RheumatologyUniversity Hospital MarburgMarburgGermany
  3. 3.Department of Orthopaedics and TraumatologyUniversity Hospital BonnBonnGermany
  4. 4.Department of OrthopaedicsUniversity Hospital GoettingenGöttingenGermany
  5. 5.Department of Orthopaedics and Orthopaedic SurgeryMedical University of GrazGrazAustria
  6. 6.Institute of Hygiene, Microbiology and Environmental MedicineMedical University of GrazGrazAustria
  7. 7.Institute of Medical Microbiology and HygienePhilipps-University MarburgMarburgGermany

Personalised recommendations