Archives of Orthopaedic and Trauma Surgery

, Volume 136, Issue 3, pp 331–338 | Cite as

Comparison of retrograde nailing and minimally invasive plating for treatment of periprosthetic supracondylar femur fractures (OTA 33-A) above total knee arthroplasty

  • Jin Park
  • Ju Hong Lee
Trauma Surgery



Retrograde intramedullary (IM) nailing and minimally invasive plate osteosynthesis (MIPO) using locking plate are typically considered the gold standards of treatment for periprosthetic supracondylar femoral fractures above total knee arthroplasty (TKA).


Forty-one consecutive patients treated with either retrograde nailing (nail group, n = 20) or minimally invasive plating (plate group, n = 21) for periprosthetic supracondylar femoral fractures between March 2003 and January 2014 were retrospectively reviewed. Clinical functions [arc range of motion and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score] and bony outcomes (bony union and malunion) were evaluated.


There was no statistical difference between the nail and plate groups in age (p = 0.665), one-year postoperative arc range of motion (p = 0.642), preoperative WOMAC score (p = 0.076), postoperative one-year WOMAC score (p = 0.135), and union time (p = 0.081). The mean union time of the nail group and the plate group was 4.3 months (range 3–12 months) and 3.6 months (range 3–5 months), respectively. There were three cases of malalignment in the nail group, whereas there was one case of malalignment in the plate group (p = 0.343). One case of nailing using a short nail demonstrated nail breakage.


Although retrograde nailing was found to have a slightly higher rate of malunion compared to minimally invasive plating, there was no statistically significant difference between both treatment options in terms of clinical outcomes. Regardless of which implant is used, the proper application is essential in management of periprosthetic supracondylar femoral fractures above TKA.


Supracondylar femur Periprosthetic fracture Total knee arthroplasty Nailing Plating 


Compliance with ethical standards

Conflicts of interest and source of funding

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.


  1. 1.
    Ritter MA, Faris PM, Keating EM (1988) Anterior femoral notching and ipsilateral supracondylar femur fracture in total knee arthroplasty. J Arthroplasty 3(2):185–187CrossRefPubMedGoogle Scholar
  2. 2.
    Su ET, DeWal H, Di Cesare PE (2004) Periprosthetic femoral fractures above total knee replacements. J Am Acad Orthop Surg 12(1):12–20PubMedGoogle Scholar
  3. 3.
    Healy WL, Siliski JM, Incavo SJ (1993) Operative treatment of distal femoral fractures proximal to total knee replacements. J Bone Joint Surg Am 75(1):27–34PubMedGoogle Scholar
  4. 4.
    Zehntner MK, Ganz R (1993) Internal fixation of supracondylar fractures after condylar total knee arthroplasty. Clin Orthop Relat Res 293:219–224PubMedGoogle Scholar
  5. 5.
    Althausen PL, Lee MA, Finkemeier CG, Meehan JP, Rodrigo JJ (2003) Operative stabilization of supracondylar femur fractures above total knee arthroplasty: a comparison of four treatment methods. J Arthroplasty 18(7):834–839CrossRefPubMedGoogle Scholar
  6. 6.
    Ritter MA, Keating EM, Faris PM, Meding JB (1995) Rush rod fixation of supracondylar fractures above total knee arthroplasties. J Arthroplasty 10(2):213–216CrossRefPubMedGoogle Scholar
  7. 7.
    Erhardt JB, Grob K, Roderer G, Hoffmann A, Forster TN, Kuster MS (2008) Treatment of periprosthetic femur fractures with the non-contact bridging plate: a new angular stable implant. Arch Orthop Trauma Surg 128(4):409–416. doi: 10.1007/s00402-007-0396-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Simon RG, Brinker MR (1999) Use of Ilizarov external fixation for a periprosthetic supracondylar femur fracture. J Arthroplasty 14(1):118–121CrossRefPubMedGoogle Scholar
  9. 9.
    Ricci WM, Loftus T, Cox C, Borrelli J (2006) Locked plates combined with minimally invasive insertion technique for the treatment of periprosthetic supracondylar femur fractures above a total knee arthroplasty. J Orthop Trauma 20(3):190–196CrossRefPubMedGoogle Scholar
  10. 10.
    Kolb W, Guhlmann H, Windisch C, Marx F, Koller H, Kolb K (2010) Fixation of periprosthetic femur fractures above total knee arthroplasty with the less invasive stabilization system: a midterm follow-up study. J Trauma 69(3):670–676. doi: 10.1097/TA.0b013e3181c9ba3b CrossRefPubMedGoogle Scholar
  11. 11.
    Kregor PJ, Hughes JL, Cole PA (2001) Fixation of distal femoral fractures above total knee arthroplasty utilizing the Less Invasive Stabilization System (L.I.S.S.). Injury 32 Suppl 3:SC64–75Google Scholar
  12. 12.
    Ricci W (2013) Classification and treatment of periprosthetic supracondylar femur fractures. J Knee Surg 26(1):9–14. doi: 10.1055/s-0033-1333901 CrossRefPubMedGoogle Scholar
  13. 13.
    Herrera DA, Kregor PJ, Cole PA, Levy BA, Jonsson A, Zlowodzki M (2008) Treatment of acute distal femur fractures above a total knee arthroplasty: systematic review of 415 cases (1981–2006). Acta Orthop 79(1):22–27. doi: 10.1080/17453670710014716 CrossRefPubMedGoogle Scholar
  14. 14.
    Bong MR, Egol KA, Koval KJ, Kummer FJ, Su ET, Iesaka K, Bayer J, Di Cesare PE (2002) Comparison of the LISS and a retrograde-inserted supracondylar intramedullary nail for fixation of a periprosthetic distal femur fracture proximal to a total knee arthroplasty. J Arthroplasty 17(7):876–881CrossRefPubMedGoogle Scholar
  15. 15.
    Meneghini RM, Keyes BJ, Reddy KK, Maar DC (2014) Modern retrograde intramedullary nails versus periarticular locked plates for supracondylar femur fractures after total knee arthroplasty. J Arthroplasty 29(7):1478–1481. doi: 10.1016/j.arth.2014.01.025 CrossRefPubMedGoogle Scholar
  16. 16.
    Rorabeck CH, Taylor JW (1999) Periprosthetic fractures of the femur complicating total knee arthroplasty. Orthop Clin North Am 30(2):265–277CrossRefPubMedGoogle Scholar
  17. 17.
    Park J, Yang KH (2013) Indications and outcomes of augmentation plating with decortication and autogenous bone grafting for femoral shaft nonunions. Injury 44(12):1820–1825. doi: 10.1016/j.injury.2013.02.021 CrossRefPubMedGoogle Scholar
  18. 18.
    Lingard EA, Katz JN, Wright RJ, Wright EA, Sledge CB (2001) Validity and responsiveness of the knee society clinical rating system in comparison with the SF-36 and WOMAC. J Bone Joint Surg Am 83-A(12):1856–1864PubMedGoogle Scholar
  19. 19.
    Lau TW, Leung F, Chan CF, Chow SP (2007) Minimally invasive plate osteosynthesis in the treatment of proximal humeral fracture. Int Orthop 31(5):657–664. doi: 10.1007/s00264-006-0242-4 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H (1999) Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma 13(6):401–406CrossRefPubMedGoogle Scholar
  21. 21.
    Gliatis J, Megas P, Panagiotopoulos E, Lambiris E (2005) Midterm results of treatment with a retrograde nail for supracondylar periprosthetic fractures of the femur following total knee arthroplasty. J Orthop Trauma 19(3):164–170CrossRefPubMedGoogle Scholar
  22. 22.
    Krettek C, Miclau T, Schandelmaier P, Stephan C, Mohlmann U, Tscherne H (1999) The mechanical effect of blocking screws (“Poller screws”) in stabilizing tibia fractures with short proximal or distal fragments after insertion of small-diameter intramedullary nails. J Orthop Trauma 13(8):550–553CrossRefPubMedGoogle Scholar
  23. 23.
    Seyhan M, Cakmak S, Donmez F, Gereli A (2013) Blocking screws for the treatment of distal femur fractures. Orthopedics 36(7):e936–e941. doi: 10.3928/01477447-20130624-26 CrossRefPubMedGoogle Scholar
  24. 24.
    Chettiar K, Jackson MP, Brewin J, Dass D, Butler-Manuel PA (2009) Supracondylar periprosthetic femoral fractures following total knee arthroplasty: treatment with a retrograde intramedullary nail. Int Orthop 33(4):981–985. doi: 10.1007/s00264-008-0587-y PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery, College of MedicineCatholic Kwandong UniversityIncheonRepublic of Korea
  2. 2.Department of Orthopedic Surgery, Medical School and Research Institute of Clinical MedicineChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations