Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 135, Issue 12, pp 1675–1682 | Cite as

Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery

  • Hans Clement
  • Christoph Zopf
  • Markus Brandner
  • Norbert P. Tesch
  • Rudolf Vallant
  • Paul PuchweinEmail author
Trauma Surgery

Abstract

Introduction

Drilling of bones in orthopaedic and trauma surgery is a common procedure. There are yet no recommendations about which drill bits/coating should be preferred and when to change a used drill bit.

Materials and methods

In preliminary studies typical “drilling patterns” of surgeons concerning used spindle speed and feeding force were recorded. Different feeding forces were tested and abrasion was analysed using magnification and a scanning electron microscope (SEM). Acquired data were used for programming a friction stir welding machine (FSWM). Four drill bits (a default AISI 440A, a HSS, an AISI 440B and a Zirconium-oxide drill bit) were analysed for abrasive wear after 20/40/60 machine-guided and hand-driven drilled holes. Additionally different drill coatings [diamond-like carbon/grafitic (DLC), titanium nitride/carbide (Ti–N)] were tested.

Results

The mean applied feeding force by surgeons was 45 ± 15.6 Newton (N). HSS bits were still usable after 51 drill holes. Both coated AISI 440A bits showed considerable breakouts of the main cutting edge after 20 hand-driven drilled holes. The coated HSS bit showed very low abrasive wear. The non-coated AISI 440B bit had a similar durability to the HSS bits. The ZrO2 dental drill bit excelled its competitors (no considerable abrasive wear at >100 holes).

Conclusions

If the default AISI 440A drill bit cannot be checked by 20–30× magnification after surgery, it should be replaced after 20 hand-driven drilled holes. Low price coated HSS bits could be a powerful alternative.

Keywords

Drill bit Drilling cortical bone Drill feeding Feeding force AISI 440A AISI 440B Coatings Peak forces 

Notes

Complaince with ethical standards

Conflict of interest

None.

References

  1. 1.
    Augustin G, Zigman T, Davila S et al (2012) Cortical bone drilling and thermal osteonecrosis. Clin Biomech (Bristol, Avon) 27(4):313–325. doi: 10.1016/j.clinbiomech.2011.10.010
  2. 2.
    Augustin G, Davila S, Mihoci K et al (2008) Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 128(1):71–77CrossRefPubMedGoogle Scholar
  3. 3.
    Augustin G, Davila S, Udilljak T et al (2012) Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop 36(7):1449–1456. doi: 10.1007/s00264-012-1491-z PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Matthews LS, Hirsch C (1972) Temperature measured in human cortical bone when drilling. J Bone Joint Surg 54A:297–308Google Scholar
  5. 5.
    Berman AT, Reid JS, Yanicko DR Jr et al (1984) Thermally induced bone necrosis in rabbits: relation to implant failure in humans. Clin Orthop 186:284–292PubMedGoogle Scholar
  6. 6.
    Eriksson RA, Albrektsson T, Magnusson B (1984) Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 18:261–268CrossRefPubMedGoogle Scholar
  7. 7.
    Natali C, Ingle P, Dowell J (1996) Orthopaedic bone drills—can they be improved? Temperature changes near the drilling face. J Bone Joint Surg Br 78(3):357–362PubMedGoogle Scholar
  8. 8.
    Schmelzeisen H (1990) Der Bohrvorgang in der Kortikalis. Springer, BerlinGoogle Scholar
  9. 9.
    Fuchsberger A (1968) Die Zerspantemperatur beim Bohren von Knochen. Medizinische Orthopädische Technik 106(H.2):54–47Google Scholar
  10. 10.
    Lee J, Rabin Y, Ozdoganlar OB (2011) A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys 33(10):1234–1244. doi: 10.1016/j.medengphy.2011.05.014 CrossRefPubMedGoogle Scholar
  11. 11.
    Bachus KN, Rondina MT, Hutchinson DT (2000) The effects of drilling force on cortical temperatures and their duration: an in vitro study. Med Eng Phys 22(10):685–691CrossRefPubMedGoogle Scholar
  12. 12.
    Lavelle C, Wedgwood D (1980) Effect of internal irrigation on frictional heat generated from bone drilling. J Oral Surg 38(7):499–503PubMedGoogle Scholar
  13. 13.
    Eriksson AR, Albrektsson T, Albrektsson B (1984) Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals. Acta Orthop Scand 55(6):629–631CrossRefPubMedGoogle Scholar
  14. 14.
    Davidson SR, James DF (2003) Drilling in bone: modeling heat generation and temperature distribution. J Biomech Eng 125(3):305–314CrossRefPubMedGoogle Scholar
  15. 15.
    Alajmo G, Schlegel U, Gueorguiev B et al (2012) Plunging when drilling: effect of using blunt drill bits. J Orthop Trauma 26(8):482–487. doi: 10.1097/BOT.0b013e3182336ec3 CrossRefPubMedGoogle Scholar
  16. 16.
    Clement H, Heidari N, Grechenig W et al (2012) Drilling, not a benign procedure: laboratory simulation of true drilling depth. Injury 43(6):950–952. doi: 10.1016/j.injury.2011.11.017 CrossRefPubMedGoogle Scholar
  17. 17.
    Pichler W, Grechenig W, Clement H et al (2009) Perforation of the third extensor compartment by the drill bit during palmar plating of the distal radius. J Hand Surg Eur 34(3):333–335. doi: 10.1177/1753193408099821 CrossRefGoogle Scholar
  18. 18.
    Eriksson RA, Adell R (1986) Temperatures during drilling for the placement of implants using the Osseo integration technique. J Oral Maxillofac Surg 44(1):4–7CrossRefPubMedGoogle Scholar
  19. 19.
    Hallab NJ, Jacobs JJ (2009) Biologic effects of implant debris. Bull NYU Hosp Jt Dis 67(2):182–188PubMedGoogle Scholar
  20. 20.
    Wiggins KL, Malkin S (1976) Drilling of bone. J Biomech 9(9):553–559CrossRefPubMedGoogle Scholar
  21. 21.
    Wang W, Shi Y, Yang N et al (2014) Experimental analysis of drilling process in cortical bone. Med Eng Phys 36(2):261–266. doi: 10.1016/j.medengphy.2013.08.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hans Clement
    • 1
  • Christoph Zopf
    • 2
  • Markus Brandner
    • 3
  • Norbert P. Tesch
    • 4
  • Rudolf Vallant
    • 2
  • Paul Puchwein
    • 1
    Email author
  1. 1.Department for TraumatologyMedical University of GrazGrazAustria
  2. 2.Institute for Materials Science and WeldingTechnical University of GrazGrazAustria
  3. 3.Institute of Electrical Measurement and Measurement Signal ProcessingTechnical University of GrazGrazAustria
  4. 4.Institute of AnatomyMedical University of GrazGrazAustria

Personalised recommendations