Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 135, Issue 8, pp 1141–1149 | Cite as

The effect of tibial slope in acute ACL-insufficient patients on concurrent meniscal tears

  • Isabelle Markl
  • Thore Zantop
  • Florian Zeman
  • Johannes Seitz
  • Peter Angele
Arthroscopy and Sports Medicine

Abstract

Introduction

The aim of this study is to evaluate the effect of the medial and lateral posterior tibial slope (MPTS, LPTS) in patients with acutely ruptured ACL on the menisci. It was hypothesized that medial and lateral meniscus lesions are seen more often with high PTS (posterior tibial slope). We hypothesized that in case of a high tibial slope a possible meniscus lesion is more often located in the posterior horn of the meniscus than in knees with a low tibial slope.

Materials and methods

We identified 537 patients with ACL insufficiency between 2012 and 2013. Of these, 71 patients were eligible for the study according to the study’s criteria. PTS was measured via MRI and classified into two groups: >10° for high tibial slope and ≤10° for low tibial slope. Any meniscal lesion was documented during arthroscopic ACL reconstruction and evaluated regarding meniscal lesion patterns with high and low PTS, taking into account the type and the location of the tear (anterior horn, intermediate part and posterior horn). Statistical analysis for differences in meniscal lesion was performed using Chi-square tests and McNemar tests for dependent variables. The level of significance was set at p ≤ 0.05.

Results

High PTS (MPTS and LPTS) was associated with a higher incidence of meniscal lesions with an odds ratio of 2.11, respectively, 3.44; however, no statistical significance was found. Among the total number of ACL-insufficient knees studied, the meniscal lesion spread more often to the posterior part in the group with a low PTS. In contrast, less damage of the posterior horn of the meniscus could be found in the group with a high PTS.

Conclusion

High PTS seems to predetermine for meniscal lesion in an acute ACL-insufficient knee. More damage to the posterior part of the menisci could generally be seen but was not associated with a high PTS. There was no statistical significance to support the initial hypothesis. Further research is needed to find out if factors other than tibial slope are risk factors for meniscal lesion in acute ACL injury.

Level of evidence

IV.

Keywords

Posterior tibial slope High tibial slope Acute ACL insufficiency Meniscal lesion 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The study was conducted according to the regulations and guidelines of the ethics committee of the University of Regensburg.

References

  1. 1.
    Allen C, Wong E, Livesay G, Sakane M, Fu F, Woo S (2000) Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 18(1):109–115PubMedCrossRefGoogle Scholar
  2. 2.
    Baker P, Coggon D, Reading I, Barrett D, McLaren M, Cooper C (2002) Sports injury, occupational physical activity, joint laxity, and meniscal damage. J Rheumatol 29(3):557–563PubMedGoogle Scholar
  3. 3.
    Barber-Westin S, Noyes F (2014) Clinical healing rates of meniscus repairs of tears in the central-third (red-white) zone. Arthroscopy 30(1):134–146PubMedCrossRefGoogle Scholar
  4. 4.
    Bellabarba C, Bush-Joseph C, Bach B (1997) Patterns of meniscal injury in the anterior cruciate-deficient knee: a review of the literature. Am J Orthop 26(1):18–23PubMedGoogle Scholar
  5. 5.
    Bonnin M, Carret J, Dimnet J, Dejour H (1996) The weight-bearing knee after anterior cruciate ligament rupture. An in vitro biomechanical study. Knee Surg Sports Traumatol Arthrosc 3(4):245–251PubMedCrossRefGoogle Scholar
  6. 6.
    Butler D, Noyes F, Grood E (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62(2):259–270PubMedGoogle Scholar
  7. 7.
    Cannon W, Vittori J (1992) The incidence of healing in arthroscopic meniscal repairs in anterior cruciate ligament-reconstructed knees versus stable knees. Am J Sports Med 20(2):176–181PubMedCrossRefGoogle Scholar
  8. 8.
    Church S, Keating J (2005) Reconstruction of the anterior cruciate ligament: timing of surgery and the incidence of meniscal tears and degenerative change. J Bone Joint Surg Br 87(12):1639–1642PubMedCrossRefGoogle Scholar
  9. 9.
    Cipolla M, Scala A, Gianni E, Puddu G (1995) Different patterns of meniscal tears in acute anterior cruciate ligament (ACL) ruptures and in chronic ACL-deficient knees. Classification, staging and timing of treatment. Knee Surg Sports Traumatol Arthrosc 3(3):130–134PubMedCrossRefGoogle Scholar
  10. 10.
    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76(5):745–749PubMedGoogle Scholar
  11. 11.
    DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483PubMedCrossRefGoogle Scholar
  12. 12.
    Feucht M, Mauro C, Brucker P, Imhoff A, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21(1):134–145PubMedCrossRefGoogle Scholar
  13. 13.
    Forkel P, Herbort M, Sprenker F, Metzlaff S, Raschke M, Petersen W (2014) The biomechanical effect of a lateral meniscus posterior root tear with and without damage to the meniscofemoral ligament: efficacy of different repair techniques. Arthroscopy 30(7):833–840PubMedCrossRefGoogle Scholar
  14. 14.
    Giffin J, Vogrin T, Zantop T, Woo Savio L Y, Harner C (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382PubMedCrossRefGoogle Scholar
  15. 15.
    de Girolamo L, Galliera E, Volpi P, Denti M, Dogliotti G, Quaglia A, Cabitza P, Corsi Romanelli MM, Randelli P (2015) Why menisci show higher healing rate when repaired during ACL reconstruction? Growth factors release can be the explanation. Knee Surg Sports Traumatol Arthrosc 23(1):90–96PubMedCrossRefGoogle Scholar
  16. 16.
    Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck J, Schutt R, Dabezies E, Beynnon B (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62PubMedCrossRefGoogle Scholar
  17. 17.
    Herfat S, Boguszewski D, Nesbitt R, Shearn J (2012) Effect of perturbing a simulated motion on knee and anterior cruciate ligament kinetics. J Biomech Eng 134(10):104504PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Does posterior tibial slope influence knee functionality in the anterior cruciate ligament-deficient and anterior cruciate ligament-reconstructed knee? Arthroscopy 26(11):1496–1502PubMedCrossRefGoogle Scholar
  19. 19.
    Hsieh H, Walker P (1976) Stabilizing mechanisms of the loaded and unloaded knee joint. J Bone Joint Surg Am 58(1):87–93PubMedGoogle Scholar
  20. 20.
    Hudek R, Fuchs B, Regenfelder F, Koch P (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469(8):2377–2384PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch P (2009) Novel Measurement Technique of the Tibial Slope on Conventional MRI. Clin Orthop Relat Res 467(8):2066–2072PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Indelicato P, Bittar E (1985) A perspective of lesions associated with ACL insufficiency of the knee. A review of 100 cases. Clin Orthop Relat Res 198:77–80PubMedGoogle Scholar
  23. 23.
    Kessler M, Behrend H, Henz S, Stutz G, Rukavina A, Kuster M (2008) Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 16(5):442–448PubMedCrossRefGoogle Scholar
  24. 24.
    Khan M, Seon J, Song E (2011) Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop 35(8):1251–1256PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Lee J, Choi Y, Shin K, Choi C (2011) Medial meniscal tears in anterior cruciate ligament-deficient knees: effects of posterior tibial slope on medial meniscal tear. Knee Surg Relat Res 23(4):227PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Levy I, Torzilli P, Warren R (1982) The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 64(6):883–888PubMedGoogle Scholar
  27. 27.
    Lipps D, Oh Y, Ashton-Miller J, Wojtys E (2012) Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med 40(1):32–40PubMedCrossRefGoogle Scholar
  28. 28.
    Lipps D, Wilson A, Ashton-Miller J, Wojtys E (2012) Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging. Am J Sports Med 40(12):2731–2736PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lipps D, Wojtys E, Ashton-Miller J (2013) Anterior cruciate ligament fatigue failures in knees subjected to repeated simulated pivot landings. Am J Sports Med 41(5):1058–1066PubMedCrossRefGoogle Scholar
  30. 30.
    Lohmander L, Englund P, Dahl L, Roos E (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769PubMedCrossRefGoogle Scholar
  31. 31.
    McLean S, Oh Y, Palmer M, Lucey S, Lucarelli D, Ashton-Miller J, Wojtys E (2011) The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Joint Surg Am 93(14):1310–1317PubMedCrossRefGoogle Scholar
  32. 32.
    Morgan C, Wojtys E, Casscells C, Casscells S (1991) Arthroscopic meniscal repair evaluated by second-look arthroscopy. Am J Sports Med 19(6):632–638PubMedCrossRefGoogle Scholar
  33. 33.
    Musahl V, Jordan S, Colvin A, Tranovich M, Irrgang J, Harner C (2010) Practice patterns for combined anterior cruciate ligament and meniscal surgery in the United States. Am J Sports Med 38(5):918–923PubMedCrossRefGoogle Scholar
  34. 34.
    Noyes F, Barber-Westin S (2012) Treatment of meniscus tears during anterior cruciate ligament reconstruction. Arthroscopy 28(1):123–130PubMedCrossRefGoogle Scholar
  35. 35.
    Oh Y, Lipps D, Ashton-Miller J, Wojtys E (2012) What strains the anterior cruciate ligament during a pivot landing? Am J Sports Med 40(3):574–583PubMedCrossRefGoogle Scholar
  36. 36.
    Smith J, Barrett G (2001) Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees. A prospective analysis of 575 tears. Am J Sports Med 29(4):415–419PubMedGoogle Scholar
  37. 37.
    Snoeker Barbara A M, Bakker Eric W P, Kegel Cornelia A T, Lucas C (2013) Risk factors for meniscal tears: a systematic review including meta-analysis. J Orthop Sports Phys Ther 43(6):352–367PubMedCrossRefGoogle Scholar
  38. 38.
    Tanaka M, Vyas D, Moloney G, Bedi A, Pearle A, Musahl V (2012) What does it take to have a high-grade pivot shift? Knee Surg Sports Traumatol Arthrosc 20(4):737–742PubMedCrossRefGoogle Scholar
  39. 39.
    Tenuta J, Arciero R (1994) Arthroscopic evaluation of meniscal repairs: factors that effect healing. Am J Sports Med 22(6):797–802PubMedCrossRefGoogle Scholar
  40. 40.
    Thompson W, Fu F (1993) The meniscus in the cruciate-deficient knee. Clin Sports Med 12(4):771–796PubMedGoogle Scholar
  41. 41.
    Toman C, Dunn W, Spindler K, Amendola A, Andrish J, Bergfeld J, Flanigan D, Jones M, Kaeding C, Marx R, Matava M, McCarty E, Parker R, Wolcott M, Vidal A, Wolf B, Huston L, Harrell F, Wright R (2009) Success of meniscal repair at anterior cruciate ligament reconstruction. Am J Sports Med 37(6):1111–1115PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Torzilli P, Deng X, Warren R (1994) The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am J Sports Med 22(1):105–112PubMedCrossRefGoogle Scholar
  43. 43.
    Vermesan D, Prejbeanu R, Laitin S, Georgianu V, Haragus H, Nitescu S, Tatullo M, Tattoli M, Caprio M, Cagiano R (2014) Meniscal tears left in situ during anatomic single bundle anterior cruciate ligament reconstruction. Eur Rev Med Pharmacol Sci 18(2):252–256PubMedGoogle Scholar
  44. 44.
    Warren L, Marshall J (1979) The supporting structures and layers on the medial side of the knee: an anatomical analysis. J Bone Joint Surg Am 61(1):56–62PubMedGoogle Scholar
  45. 45.
    Wickiewicz T (1990) Meniscal injuries in the cruciate-deficient knee. Clin Sports Med 9(3):681–694PubMedGoogle Scholar
  46. 46.
    Wordeman S, Quatman C, Kaeding C, Hewett T (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 40(7):1673–1681PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Zeng C, Cheng L, Wei J, Gao S, Yang T, Luo W, Li Y, Xu M, Lei G (2014) The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 22(1):53–65PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Isabelle Markl
    • 1
  • Thore Zantop
    • 2
  • Florian Zeman
    • 3
  • Johannes Seitz
    • 4
  • Peter Angele
    • 2
    • 5
  1. 1.University of RegensburgRegensburgGermany
  2. 2.Sporthopaedicum StraubingStraubingGermany
  3. 3.Center of Clinical TrailsUniversity Hospital of RegensburgRegensburgGermany
  4. 4.Dr. Neumaier MVZ GmBHCastra Regina CenterRegensburgGermany
  5. 5.Department of Trauma Surgery, FIFA Medical Centre of ExcellenceUniversity Medical Centre RegensburgRegensburgGermany

Personalised recommendations