Archives of Orthopaedic and Trauma Surgery

, Volume 134, Issue 9, pp 1227–1235 | Cite as

Percutaneous cerclage wiring followed by intramedullary nailing for subtrochanteric femoral fractures: a technical note with clinical results

  • Joon-Woo Kim
  • Ki-Chul Park
  • Jong-Keon Oh
  • Chang-Wug Oh
  • Yong-Cheol Yoon
  • Hyo-Won Chang
Trauma Surgery



Although intramedullary nailing is an ideal treatment for subtrochanteric femoral fractures, it is technically challenging in fractures extending into the nail entry area and/or involving the lesser trochanter. Although the application of circumferential wire may facilitate reduction in these situations, its use remains controversial due to possible blood supply disturbances to underlying bone. In the present study, we evaluated complex subtrochanteric fractures treated by percutaneous cerclage wiring followed by intramedullary (IM) nailing for anatomical fracture reduction and union.


Twelve patients (mean age 48.3 years) with an unstable subtrochanteric fracture were prospectively treated. Indications of percutaneous cerclage wiring followed by IM nailing were a fracture extending proximally into the nail entry area deemed difficult to treat by anatomical reconstruction by IM nailing or a fracture with long oblique or spiral component. One or two cerclage wires were percutaneously applied for the temporary reduction of main fragments, and then, a cephalo-medullary or a reconstruction nail was fixed. We assessed radiologic results (union time, alignment), functional results, and complications.


All 12 cases healed, without a bone graft, at an average of 19.1 weeks after surgery (range 16–24). In 11 cases, acceptable alignment was achieved (mean, valgus 0.3° extension 0.6°) with minimal leg-length discrepancy; the other exhibited 1 cm of shortening. All patients were able to return to pre-injury activity levels, and median Merle d’Aubigne score was 16.9 (15–18). No infection or implant-related complication was encountered to latest follow-up (minimum 12 months postoperatively).


Temporary reduction by percutaneous wiring offers a means of satisfactory nailing in difficult subtrochanteric femoral fractures, and affords anatomical reconstruction and favorable bony union.


Subtrochanteric femoral fractures Percutaneous wiring Intramedullary nailing 


Conflict of interest

All authors have certified that they have no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with this article.


  1. 1.
    Bedi A, Le Toan T (2004) Subtrochanteric femur fractures. Orthop Clin North Am 35:473–483. doi: 10.1016/j.ocl.2004.05.006 PubMedCrossRefGoogle Scholar
  2. 2.
    Afsari A, Liporace F, Lindvall E, Infante A Jr, Sagi HC, Haidukewych GJ (2009) Clamp-assisted reduction of high subtrochanteric fractures of the femur. J Bone Joint Surg Am 91:1913–1918. doi: 10.2106/JBJS.H.01563 PubMedCrossRefGoogle Scholar
  3. 3.
    Kennedy MT, Mitra A, Hierlihy TG, Harty JA, Reidy D, Dolan M (2011) Subtrochanteric hip fractures treated with cerclage cables and long cephalomedullary nails: a review of 17 consecutive cases over 2 years. Injury 42:1317–1321. doi: 10.1016/j.injury.2011.03.023 PubMedCrossRefGoogle Scholar
  4. 4.
    Ban I, Birkelund L, Palm H, Brix M, Troelsen A (2012) Circumferential wires as a supplement to intramedullary nailing in unstable trochanteric hip fractures: 4 reoperations in 60 patients followed for 1 year. Acta Orthop 83:240–243. doi: 10.3109/17453674.2012.665329 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Haidukewych GJ, Berry DJ (2004) Nonunion of fractures of the subtrochanteric region of the femur. Clin Orthop 419:185–188PubMedCrossRefGoogle Scholar
  6. 6.
    Starr AJ, Hay MT, Reinert CM, Borer DS, Christensen KC (2006) Cephalomedullary nails in the treatment of high-energy proximal femur fractures in young patients: a prospective, randomized comparison of trochanteric versus piriformis fossa entry portal. J Orthop Trauma 20:240–246PubMedCrossRefGoogle Scholar
  7. 7.
    Shukla S, Johnston P, Ahmad MA, Wynn-Jones H, Patel AD, Walton NP (2007) Outcome of traumatic subtrochanteric femoral fractures fixed using cephalo-medullary nails. Injury 38:1286–1293. doi: 10.1016/j.injury.2007.05.013 PubMedCrossRefGoogle Scholar
  8. 8.
    Oh CW, Kim JJ, Byun YS, Oh JK, Kim JW, Kim SY, Park BC, Lee HJ (2009) Minimally invasive plate osteosynthesis of subtrochanteric femur fractures with a locking plate: a prospective series of 20 fractures. Arch Orthop Trauma Surg 129:1659–1665. doi: 10.1007/s00402-009-0815-y PubMedCrossRefGoogle Scholar
  9. 9.
    Ma CH, Tu YK, Yu SW, Yen CY, Yeh JH, Wu CH (2010) Reverse LISS plates for unstable proximal femoral fractures. Injury 41:827–833. doi: 10.1016/j.injury.2010.03.028 PubMedCrossRefGoogle Scholar
  10. 10.
    Wieser K, Babst R (2010) Fixation failure of the LCP proximal femoral plate 4.5/5.0 in patients with missing posteromedial support in unstable per-, inter-, and subtrochanteric fractures of the proximal femur. Arch Orthop Trauma Surg 130:1281–1287. doi: 10.1007/s00402-010-1074-7 PubMedCrossRefGoogle Scholar
  11. 11.
    Glassner PJ, Tejwani NC (2011) Failure of proximal femoral locking compression plate: a case series. J Orthop Trauma 25:76–83. doi: 10.1097/BOT.0b013e3181e31ccc PubMedCrossRefGoogle Scholar
  12. 12.
    Apivatthakakul T, Phornphutkul C (2012) Percutaneous cerclage wiring for reduction of periprosthetic and difficult femoral fractures. A technical note. Injury 43:966–971. doi: 10.1016/j.injury.2011.11.007 PubMedCrossRefGoogle Scholar
  13. 13.
    Loizou CL, McNamara I, Ahmed K, Pryor GA, Parker MJ (2010) Classification of subtrochanteric femoral fractures. Injury 41:739–745. doi: 10.1016/j.injury.2010.02.018 PubMedCrossRefGoogle Scholar
  14. 14.
    Pazzaglia UE, Congiu T, Raspanti M, Ranchetti F, Quacci D (2009) Anatomy of the intracortical canal system: scanning electron microscopy study in rabbit femur. Clin Orthop 467:2446–2456. doi: 10.1007/s11999-009-0806-x PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Perren SM, Fernandez Dell’Oca A, Lenz M, Windolf M (2011) Cerclage, evolution and potential of a Cinderella technology. An overview with reference to periprosthetic fractures. Acta Chir Orthop Traumatol Cech 78:190–199PubMedGoogle Scholar
  16. 16.
    Lenz M, Perren SM, Gueorguiev B, Richards RG, Krause F, Fernandez Dell’Oca A, Höntzsch D, Windolf M (2012) Underneath the cerclage: an ex vivo study on the cerclage–bone interface mechanics. Arch Orthop Trauma Surg 132:1467–1472. doi: 10.1007/s00402-012-1572-x PubMedCrossRefGoogle Scholar
  17. 17.
    Lenz M, Perren SM, Richards RG, Mückley T, Hofmann GO, Gueorguiev B, Windolf M (2013) Biomechanical performance of different cable and wire cerclage configurations. Int Orthop 37:125–130. doi: 10.1007/s00264-012-1702-7 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Apivatthakakul T, Phaliphot J, Leuvitoonvechkit S (2013) Percutaneous cerclage wiring, does it disrupt femoral blood supply? A cadaveric injection study. Injury 44:168–174. doi: 10.1016/j.injury.2012.10.016 PubMedCrossRefGoogle Scholar
  19. 19.
    Müller T, Topp T, Kühne CA, Gebhart G, Ruchholtz S, Zettl R (2011) The benefit of wire cerclage stabilisation of the medial hinge in intramedullary nailing for the treatment of subtrochanteric femoral fractures: a biomechanical study. Int Orthop 35:1237–1243. doi: 10.1007/s00264-010-1204-4 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Aleto T, Ritter MA, Berend ME (2008) Case report: superficial femoral artery injury resulting from cerclage wiring during revision THA. Clin Orthop 466:749–753. doi: 10.1007/s11999-007-0109-z PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joon-Woo Kim
    • 3
  • Ki-Chul Park
    • 1
  • Jong-Keon Oh
    • 2
  • Chang-Wug Oh
    • 3
  • Yong-Cheol Yoon
    • 2
  • Hyo-Won Chang
    • 3
  1. 1.Department of Orthopaedic SurgeryHanyang University Guri HospitalGuriRepublic of Korea
  2. 2.Department of Orthopaedic SurgeryKorea University Guro HospitalSeoulRepublic of Korea
  3. 3.Department of Orthopaedic SurgeryKyungpook National University HospitalDaeguRepublic of Korea

Personalised recommendations