Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 133, Issue 6, pp 765–772 | Cite as

Thoracolumbar spinal tuberculosis with psoas abscesses treated by one-stage posterior transforaminal lumbar debridement, interbody fusion, posterior instrumentation, and postural drainage

  • Xiaoyang Pang
  • Xiongjie Shen
  • Ping Wu
  • Chenke Luo
  • Zhengquan Xu
  • Xiyang WangEmail author
Orthopaedic Surgery

Abstract

Purpose

Retrospective analysis of the clinical efficacy and feasibility of patients with thoracolumbar spinal tuberculosis with psoas abscesses treated by one-stage posterior transforaminal lumbar debridement, interbody fusion, posterior instrumentation, and postural drainage.

Method

A total of 18 patients with thoracolumbar tuberculosis (TB), between February 2007 and February 2011, underwent one-stage posterior transforaminal lumbar debridement, interbody fusion, posterior instrumentation, and postural drainage. And the clinical efficacy was evaluated based on surgery duration time, the blood loss, the postural drainage of time, neurological status that was recorded by American Spinal Injury Association (ASIA) Impairment Scale, the fate of bone graft fusion, kyphosis angle, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP), which were collected at certain time.

Results

The average follow-up period was 34 months (range 18–48 months). 18 patients suffered from seriously neurological deficits pre-operatively, of which 16 patients returned to normal at final follow-up. The surgery duration time was 197 ± 37.9 min, and the blood loss was 815 ± 348.5 ml. The postural drainage of time was 7.2 ± 2.7 days. The psoas abscesses disappeared in all cases, within the time range of 6–9 months (mean 7.4 ± 1.2 months). All patients of the grafted bones were thoroughly fused, with a fusion time ranging from 4 to 12 months (mean 7.8 months). Kyphosis angle was 44.32 ± 7.26° on average pre-operative and returned to 11.72 ± 2.85° at 6 weeks after operation; kyphosis angle was 13.10 ± 2.39° at final follow-up. The values of ESR and CRP were significant declined at 6 weeks post-operative, and returned to normal levels at final follow-up.

Conclusion

With standardized anti-TB chemotherapy, thoracolumbar spinal tuberculosis with psoas abscesses could be effectively treated by one-stage posterior transforaminal lumbar debridement, interbody fusion, posterior instrumentation, and postural drainage.

Keywords

Thoracolumbar Spine tuberculosis Posterior transforaminal lumbar debridement Interbody fusion Psoas abscesses 

Notes

Acknowledgments

This publication was funded in part by the National Natural Science Foundation of China (81171736).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dunn R, Zondagh I, Candy S (2011) Spinal tuberculosis: magnetic resonance imaging and neurological impairment. Spine 36(6):469–473PubMedCrossRefGoogle Scholar
  2. 2.
    Turgut M (2001) Spinal tuberculosis (Pott’s disease): its clinical presentation, surgical management, and outcome. A survey study on 694 patients. Neurosurg Rev 24(1):8–13PubMedCrossRefGoogle Scholar
  3. 3.
    Namisato S, Nakasone C, Okudaira S, Touyama M, Ishikawa N, Higa H, Fujita J (2010) A case of afebrile miliary tuberculosis that progressed from tuberculous spondylitis with iliopsoas abscess. Intern Med 49(19):2151–2155PubMedCrossRefGoogle Scholar
  4. 4.
    Goni V, Thapa BR, Vyas S, Gopinathan NR, Rajan Manoharan S, Krishnan V (2012) Bilateral psoas abscess: atypical presentation of spinal tuberculosis. Arch Iran Med 15(4):253–256. doi: 012154/AIM.0017 PubMedGoogle Scholar
  5. 5.
    Moon MS, Moon YW, Moon JL, Kim SS, Sun DH (2002) Conservative treatment of tuberculosis of the lumbar and lumbosacral spine. Clin Orthop Relat Res 398:40–49PubMedCrossRefGoogle Scholar
  6. 6.
    Lee JS, Moon KP, Kim SJ, Suh KT (2007) Posterior lumbar interbody fusion and posterior instrumentation in the surgical management of lumbar tuberculous spondylitis. J Bone Jt Surgery Br Vol 89(2):210–214. doi: 10.1302/0301-620X.89B2.17849 CrossRefGoogle Scholar
  7. 7.
    Suh KT, Seong YJ, Lee JS (2008) Simultaneous anterior and posterior surgery in the management of tuberculous spondylitis with psoas abscess in patients with neurological deficits. Asian spine j 2(2):94–101. doi: 10.4184/asj.2008.2.2.94 PubMedCrossRefGoogle Scholar
  8. 8.
    Buyukbebeci O, Seckiner I, Karsli B, Karakurum G, Baskonus I, Bilge O, Kacira BK (2012) Retroperitoneoscopic drainage of complicated psoas abscesses in patients with tuberculous lumbar spondylitis. Eur spine j off publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 21(3):470–473. doi: 10.1007/s00586-011-2049-2 CrossRefGoogle Scholar
  9. 9.
    Jain AK (2010) Tuberculosis of the spine: a fresh look at an old disease. J Bone Jt Surg Br Vol 92(7):905–913. doi: 10.1302/0301-620X.92B7.24668 Google Scholar
  10. 10.
    Lee CK, Vessa P, Lee JK (1995) Chronic disabling low back pain syndrome caused by internal disc derangements. The results of disc excision and posterior lumbar interbody fusion. Spine 20(3):356–361PubMedCrossRefGoogle Scholar
  11. 11.
    Dinc H, Ahmetoglu A, Baykal S, Sari A, Sayil O, Gumele HR (2002) Image-guided percutaneous drainage of tuberculous iliopsoas and spondylodiskitic abscesses: midterm results. Radiology 225(2):353–358PubMedCrossRefGoogle Scholar
  12. 12.
    Mehta JS, Bhojraj SY (2001) Tuberculosis of the thoracic spine. A classification based on the selection of surgical strategies. J Bone Jt Surg Br Vol 83(6):859–863CrossRefGoogle Scholar
  13. 13.
    Chunguang Z, Limin L, Rigao C, Yueming S, Hao L, Qingquan K, Quan G, Tao L, Jiancheng Z (2010) Surgical treatment of kyphosis in children in healed stages of spinal tuberculosis. J Pediatr Orthop 30(3):271–276. doi: 10.1097/BPO.0b013e3181d39899 PubMedCrossRefGoogle Scholar
  14. 14.
    Jain AK, Dhammi IK, Jain S, Mishra P (2010) Kyphosis in spinal tuberculosis—prevention and correction. Indian J Orthop 44(2):127–136. doi: 10.4103/0019-5413.61893 PubMedCrossRefGoogle Scholar
  15. 15.
    Boachie-Adjei O, Papadopoulos EC, Pellise F, Cunningham ME, Perez-Grueso FS, Gupta M, Lonner B, Paonessa K, King A, Sacramento C, Kim HJ, Mendelow M, Yazici M (2012) Late treatment of tuberculosis-associated kyphosis: literature review and experience from a SRS-GOP site. Eur spine j off publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. doi: 10.1007/s00586-012-2338-4 Google Scholar
  16. 16.
    Cheung WY, Luk KD (2012) Clinical and radiological outcomes after conservative treatment of TB spondylitis: is the 15 years’ follow-up in the MRC study long enough? Eur spine j off publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. doi: 10.1007/s00586-012-2332-x Google Scholar
  17. 17.
    Benli IT, Kaya A, Acaroglu E (2007) Anterior instrumentation in tuberculous spondylitis: is it effective and safe? Clin Orthop Relat Res 460:108–116. doi: 10.1097/BLO.0b013e318065b70d PubMedGoogle Scholar
  18. 18.
    Jain AK, Dhammi IK, Prashad B, Sinha S, Mishra P (2008) Simultaneous anterior decompression and posterior instrumentation of the tuberculous spine using an anterolateral extrapleural approach. J Bone Jt Surg Br Vol 90(11):1477–1481. doi: 10.1302/0301-620X.90B11.20972 Google Scholar
  19. 19.
    Issack PS, Boachie-Adjei O (2012) Surgical correction of kyphotic deformity in spinal tuberculosis. Int Orthop 36(2):353–357. doi: 10.1007/s00264-011-1292-9 PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang HQ, Lin MZ, Ge L, Li JS, Wu JH, Liu JY (2012) Surgical management by one-stage posterior transforaminal lumbar debridement, interbody fusion, and posterior instrumentation for lumbo-sacral tuberculosis in the aged. Arch Orthop Trauma Surg 132(12):1677–1683. doi: 10.1007/s00402-012-1604-6 PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang HQ, Lin MZ, Li JS, Tang MX, Guo CF, Wu JH, Liu JY (2012) One-stage posterior debridement, transforaminal lumbar interbody fusion and instrumentation in treatment of lumbar spinal tuberculosis: a retrospective case series. Arch Orthop Trauma Surg. doi: 10.1007/s00402-012-1669-2 Google Scholar
  22. 22.
    Zhang H, Sheng B, Tang M, Guo C, Liu S, Huang S, Gao Q, Liu J, Wu J (2012) One-stage surgical treatment for upper thoracic spinal tuberculosis by internal fixation, debridement, and combined interbody and posterior fusion via posterior-only approach. Eur spine j off publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. doi: 10.1007/s00586-012-2470-1 Google Scholar
  23. 23.
    Ma YZ, Cui X, Li HW, Chen X, Cai XJ, Bai YB (2012) Outcomes of anterior and posterior instrumentation under different surgical procedures for treating thoracic and lumbar spinal tuberculosis in adults. Int Orthop 36(2):299–305. doi: 10.1007/s00264-011-1390-8 PubMedCrossRefGoogle Scholar
  24. 24.
    Dahabreh Z, Calori GM, Kanakaris NK, Nikolaou VS, Giannoudis PV (2009) A cost analysis of treatment of tibial fracture nonunion by bone grafting or bone morphogenetic protein-7. Int Orthop 33(5):1407–1414. doi: 10.1007/s00264-008-0709-6 PubMedCrossRefGoogle Scholar
  25. 25.
    Wang XB, Li J, Lu GH, Wang B, Lu C, Kang YJ (2012) Single-stage posterior instrumentation and anterior debridement for active tuberculosis of the thoracic and lumbar spine with kyphotic deformity. Int Orthop 36(2):373–380. doi: 10.1007/s00264-011-1389-1 PubMedCrossRefGoogle Scholar
  26. 26.
    Sundararaj GD, Behera S, Ravi V, Venkatesh K, Cherian VM, Lee V (2003) Role of posterior stabilisation in the management of tuberculosis of the dorsal and lumbar spine. J Bone Jt Surg Br Vol 85(1):100–106CrossRefGoogle Scholar
  27. 27.
    Blondal K, Viiklepp P, Guethmundsson LJ, Altraja A (2012) Predictors of recurrence of multidrug-resistant and extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis Off J Int Union Against Tuberc Lung Dis 16(9):1228–1233. doi: 10.5588/ijtld.12.0037 CrossRefGoogle Scholar
  28. 28.
    McGreevy J, Jean Juste MA, Severe P, Collins S, Koenig S, Pape JW, Fitzgerald DW (2012) Outcomes of HIV-infected patients treated for recurrent tuberculosis with the standard retreatment regimen. Int J Tuberc Lung Dis Off J Int Union Against Tuberc Lung Dis 16(6):841–845. doi: 10.5588/ijtld.11.0210 Google Scholar
  29. 29.
    Kim S, Kang Y, Krueger CA, Sen M, Holcomb JB, Chen D, Wenke JC, Yang Y (2012) Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater 8(5):1768–1777. doi: 10.1016/j.actbio.2012.01.009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaoyang Pang
    • 1
  • Xiongjie Shen
    • 2
  • Ping Wu
    • 1
  • Chenke Luo
    • 1
  • Zhengquan Xu
    • 1
  • Xiyang Wang
    • 1
    Email author
  1. 1.Department of Spine SurgeryThe Xiangya Hospital of Central South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Spine SurgeryThe Hunan Provincial People’s HospitalChangshaPeople’s Republic of China

Personalised recommendations