Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 132, Issue 11, pp 1653–1663 | Cite as

High incidence of tunnel widening after anterior cruciate ligament reconstruction with transtibial femoral tunnel placement

  • Sven NebelungEmail author
  • Gregor Deitmer
  • Rolf Gebing
  • Frank Reichwein
  • Wolfgang Nebelung
Arthroscopy and Sports Medicine

Abstract

Background

This study evaluated the incidence, amount, morphology and clinical significance of bone tunnel widening (TW) at a mean 5-year period after anterior cruciate ligament reconstruction (ACLR) with a transtibial drilling technique.

Methods

Fifty-nine patients undergoing primary ACLR using quadrupled hamstring autografts, biodegradable transfemoral pins for femoral-sided and 2-mm oversized interference screws for tibial-sided graft fixation were followed up at a mean 61 months postoperatively. Patients were examined clinically and by MRI. Tunnel cross-sectional areas (CSA) were related to drill diameters, which were significantly correlated with radiographic tunnel sizes. Tunnel morphologies were assessed and their positions determined using an anatomical coordinate system.

Results

CSA had more than doubled in all segments measured (p < 0.0001) except at the femoral notch level. Greatest CSA increases were found at the femoral graft suspension point (122 %) and at the central tibial tunnel segment (134 %). 54 (92) and 56 (95 %) patients had significant TW, i.e., CSA increase of more than 50 %, in at least one tunnel segment femorally and tibially. Four different tunnel morphologies were observed, of which the linear type was most often encountered on either side. Mean side-to-side difference in anterior-posterior laxity was 1.0 ± 1.4 mm, while Lysholm, IKDC and Tegner acitivity scores were 90 ± 12, 84 ± 15 and 4 (1–9); clinical outcomes were not found to be correlated with tunnel sizes and morphologies as were tunnel positions and tunnel sizes.

Conclusions

This study demonstrates that considerable TW occurs in virtually all patients in the mid term after ACLR using a transtibial drilling technique with ‘high’ femoral tunnel positions. Yet, neither amount nor morphology or tunnel position does affect knee stability or function.

Keywords

Anterior cruciate ligament reconstruction BioTransfix® fixation Tunnel widening 5-year follow-up Clinical outcomes Magnetic resonance imaging 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN (2004) Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med 32(3):635–640PubMedCrossRefGoogle Scholar
  2. 2.
    Arnold MP, Kooloos J, van Kampen A (2001) Single-incision technique misses the anatomical femoral anterior cruciate ligament insertion: a cadaver study. Knee Surg Sports Traumatol Arthrosc 9(4):194–199PubMedGoogle Scholar
  3. 3.
    Asik M, Sen C, Tuncay I, Erdil M, Avci C, Taser OF (2007) The mid- to long-term results of the anterior cruciate ligament reconstruction with hamstring tendons using Transfix technique. Knee Surg Sports Traumatol Arthrosc 15(8):965–972PubMedCrossRefGoogle Scholar
  4. 4.
    Barber FA, Dockery WD (2006) Long-term absorption of poly-l-lactic Acid interference screws. Arthroscopy 22(8):820–826PubMedCrossRefGoogle Scholar
  5. 5.
    Baumfeld JA, Diduch DR, Rubino LJ et al (2008) Tunnel widening following anterior cruciate ligament reconstruction using hamstring autograft: a comparison between double cross-pin and suspensory graft fixation. Knee Surg Sports Traumatol Arthrosc 16(12):1108–1113PubMedCrossRefGoogle Scholar
  6. 6.
    Becker R, Voigt D, Starke C, Heymann M, Wilson GA, Nebelung W (2001) Biomechanical properties of quadruple tendon and patellar tendon femoral fixation techniques. Knee Surg Sports Traumatol Arthrosc 9(6):337–342PubMedCrossRefGoogle Scholar
  7. 7.
    Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28(5):705–710PubMedGoogle Scholar
  8. 8.
    Buck DC, Simonian PT, Larson RV, Borrow J, Nathanson DA (2004) Timeline of tibial tunnel expansion after single-incision hamstring anterior cruciate ligament reconstruction. Arthroscopy 20(1):34–36PubMedCrossRefGoogle Scholar
  9. 9.
    Buelow JU, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10(2):80–85PubMedCrossRefGoogle Scholar
  10. 10.
    Chhabra A, Kline AJ, Nilles KM, Harner CD (2006) Tunnel expansion after anterior cruciate ligament reconstruction with autogenous hamstrings: a comparison of the medial portal and transtibial techniques. Arthroscopy 22(10):1107–1112PubMedCrossRefGoogle Scholar
  11. 11.
    Clatworthy MG, Annear P, Bulow JU, Bartlett RJ (1999) Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc 7(3):138–145PubMedCrossRefGoogle Scholar
  12. 12.
    Cossey AJ, Kalairajah Y, Morcom R, Spriggins AJ (2006) Magnetic resonance imaging evaluation of biodegradable transfemoral fixation used in anterior cruciate ligament reconstruction. Arthroscopy 22(2):199–204PubMedCrossRefGoogle Scholar
  13. 13.
    Fauno P, Kaalund S (2005) Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study. Arthroscopy 21(11):1337–1341PubMedCrossRefGoogle Scholar
  14. 14.
    Fink C, Zapp M, Benedetto KP, Hackl W, Hoser C, Rieger M (2001) Tibial tunnel enlargement following anterior cruciate ligament reconstruction with patellar tendon autograft. Arthroscopy 17(2):138–143PubMedCrossRefGoogle Scholar
  15. 15.
    Fules PJ, Madhav RT, Goddard RK, Newman-Sanders A, Mowbray MA (2003) Evaluation of tibial bone tunnel enlargement using MRI scan cross-sectional area measurement after autologous hamstring tendon ACL replacement. Knee 10(1):87–91PubMedCrossRefGoogle Scholar
  16. 16.
    Galla M, Uffmann J, Lobenhoffer P (2004) Femoral fixation of hamstring tendon autografts using the TransFix device with additional bone grafting in an anteromedial portal technique. Arch Orthop Trauma Surg 124(4):281–284PubMedCrossRefGoogle Scholar
  17. 17.
    Gavriilidis I, Motsis EK, Pakos EE, Georgoulis AD, Mitsionis G, Xenakis TA (2008) Transtibial versus anteromedial portal of the femoral tunnel in ACL reconstruction: a cadaveric study. Knee 15(5):364–367PubMedCrossRefGoogle Scholar
  18. 18.
    Getelman MH, Friedman MJ (1999) Revision anterior cruciate ligament reconstruction surgery. J Am Acad Orthop Surg 7(3):189–198PubMedGoogle Scholar
  19. 19.
    Giron F, Aglietti P, Cuomo P, Mondanelli N, Ciardullo A (2005) Anterior cruciate ligament reconstruction with double-looped semitendinosus and gracilis tendon graft directly fixed to cortical bone: 5-year results. Knee Surg Sports Traumatol Arthrosc 13(2):81–91PubMedCrossRefGoogle Scholar
  20. 20.
    Gougoulias N, Khanna A, Griffiths D, Maffulli N (2008) ACL reconstruction: can the transtibial technique achieve optimal tunnel positioning? A radiographic study. Knee 15(6):486–490PubMedCrossRefGoogle Scholar
  21. 21.
    Grossman MG, ElAttrache NS, Shields CL, Glousman RE (2005) Revision anterior cruciate ligament reconstruction: three- to nine-year follow-up. Arthroscopy 21(4):418–423PubMedCrossRefGoogle Scholar
  22. 22.
    Hantes ME, Dailiana Z, Zachos VC, Varitimidis SE (2006) Anterior cruciate ligament reconstruction using the Bio-TransFix femoral fixation device and anteromedial portal technique. Knee Surg Sports Traumatol Arthrosc 14(5):497–501PubMedCrossRefGoogle Scholar
  23. 23.
    Hantes ME, Mastrokalos DS, Yu J, Paessler HH (2004) The effect of early motion on tibial tunnel widening after anterior cruciate ligament replacement using hamstring tendon grafts. Arthroscopy 20(6):572–580PubMedCrossRefGoogle Scholar
  24. 24.
    Heming JF, Rand J, Steiner ME (2007) Anatomical limitations of transtibial drilling in anterior cruciate ligament reconstruction. Am J Sports Med 35(10):1708–1715PubMedCrossRefGoogle Scholar
  25. 25.
    Iorio R, Vadala A, Argento G, Di Sanzo V, Ferretti A (2007) Bone tunnel enlargement after ACL reconstruction using autologous hamstring tendons: a CT study. Int Orthop 31(1):49–55PubMedCrossRefGoogle Scholar
  26. 26.
    Irrgang JJ, Ho H, Harner CD, Fu FH (1998) Use of the International Knee Documentation Committee guidelines to assess outcome following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6(2):107–114PubMedCrossRefGoogle Scholar
  27. 27.
    Kaseta MK, DeFrate LE, Charnock BL, Sullivan RT, Garrett WE Jr (2008) Reconstruction technique affects femoral tunnel placement in ACL reconstruction. Clin Orthop Relat Res 466(6):1467–1474PubMedCrossRefGoogle Scholar
  28. 28.
    Klein JP, Lintner DM, Downs D, Vavrenka K (2003) The incidence and significance of femoral tunnel widening after quadrupled hamstring anterior cruciate ligament reconstruction using femoral cross pin fixation. Arthroscopy 19(5):470–476PubMedCrossRefGoogle Scholar
  29. 29.
    Kopf S, Forsythe B, Wong AK et al (2010) Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Joint Surg Am 92(6):1427–1431PubMedCrossRefGoogle Scholar
  30. 30.
    Kopf S, Schenkengel JP, Wieners G, Starke C, Becker R (2010) No bone tunnel enlargement in patients with open growth plates after transphyseal ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18(11):1445–1451PubMedCrossRefGoogle Scholar
  31. 31.
    Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 31(2):174–181PubMedGoogle Scholar
  32. 32.
    Lajtai G, Schmiedhuber G, Unger F et al (2001) Bone tunnel remodeling at the site of biodegradable interference screws used for anterior cruciate ligament reconstruction: 5-year follow-up. Arthroscopy 17(6):597–602PubMedCrossRefGoogle Scholar
  33. 33.
    Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10(3):150–154PubMedCrossRefGoogle Scholar
  34. 34.
    Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH (2004) Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy 20(2):122–128PubMedCrossRefGoogle Scholar
  35. 35.
    Marchant MH Jr, Willimon SC, Vinson E, Pietrobon R, Garrett WE, Higgins LD (2009) Comparison of plain radiography, computed tomography, and magnetic resonance imaging in the evaluation of bone tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(8):1059–1064PubMedCrossRefGoogle Scholar
  36. 36.
    Marti C, Imhoff AB, Bahrs C, Romero J (1997) Metallic versus bioabsorbable interference screw for fixation of bone-patellar tendon-bone autograft in arthroscopic anterior cruciate ligament reconstruction. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5(4):217–221PubMedCrossRefGoogle Scholar
  37. 37.
    Matsumoto A, Howell SM, Liu-Barba D (2006) Time-related changes in the cross-sectional area of the tibial tunnel after compaction of an autograft bone dowel alongside a hamstring graft. Arthroscopy 22(8):855–860PubMedCrossRefGoogle Scholar
  38. 38.
    Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 22(6):660–668PubMedCrossRefGoogle Scholar
  39. 39.
    Nebelung W, Becker R, Merkel M, Ropke M (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction with semitendinosus tendon using endobutton fixation on the femoral side. Arthroscopy 14(8):810–815PubMedCrossRefGoogle Scholar
  40. 40.
    Orrego M, Larrain C, Rosales J et al (2008) Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy 24(12):1373–1380PubMedCrossRefGoogle Scholar
  41. 41.
    Peyrache MD, Djian P, Christel P, Witvoet J (1996) Tibial tunnel enlargement after anterior cruciate ligament reconstruction by autogenous bone-patellar tendon-bone graft. Knee Surg Sports Traumatol Arthrosc 4(1):2–8PubMedCrossRefGoogle Scholar
  42. 42.
    Siebold R (2007) Observations on bone tunnel enlargement after double-bundle anterior cruciate ligament reconstruction. Arthroscopy 23(3):291–298PubMedCrossRefGoogle Scholar
  43. 43.
    Stener S, Ejerhed L, Sernert N, Laxdal G, Rostgard-Christensen L, Kartus J (2010) A long-term, prospective, randomized study comparing biodegradable and metal interference screws in anterior cruciate ligament reconstruction surgery: radiographic results and clinical outcome. Am J Sports Med 38(8):1598–1605PubMedCrossRefGoogle Scholar
  44. 44.
    Tegner Y, Lysholm J, Lysholm M, Gillquist J (1986) A performance test to monitor rehabilitation and evaluate anterior cruciate ligament injuries. Am J Sports Med 14(2):156–159PubMedCrossRefGoogle Scholar
  45. 45.
    Weiler A, Hoffmann RF, Siepe CJ, Kolbeck SF, Sudkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28(3):356–359PubMedGoogle Scholar
  46. 46.
    Wilson TC, Kantaras A, Atay A, Johnson DL (2004) Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med 32(2):543–549PubMedCrossRefGoogle Scholar
  47. 47.
    Wright RW, Dunn WR, Amendola A et al (2007) Risk of tearing the intact anterior cruciate ligament in the contralateral knee and rupturing the anterior cruciate ligament graft during the first 2 years after anterior cruciate ligament reconstruction: a prospective MOON cohort study. Am J Sports Med 35(7):1131–1134PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sven Nebelung
    • 1
    Email author
  • Gregor Deitmer
    • 2
  • Rolf Gebing
    • 3
  • Frank Reichwein
    • 1
  • Wolfgang Nebelung
    • 1
  1. 1.Department of Rheumatology and ArthroscopyMarienkrankenhaus Düsseldorf-KaiserswerthDüsseldorfGermany
  2. 2.Department of OrthopaedicsCrossklinikBaselSwitzerland
  3. 3.Department of Diagnostic RadiologySt. Vinzenz-KrankenhausDüsseldorfGermany

Personalised recommendations