Archives of Orthopaedic and Trauma Surgery

, Volume 129, Issue 8, pp 1037–1046 | Cite as

Graft remodeling during growth following anterior cruciate ligament reconstruction in skeletally immature sheep

  • Rupert Meller
  • G. Brandes
  • C. Drögemüller
  • F. Fritz
  • F. Schiborra
  • M. Fehr
  • S. Hankemeier
  • C. Krettek
  • C. Hurschler
Arthroscopy and Sports Medicine



Ruptures of the anterior cruciate ligament are being diagnosed with increasing frequency in skeletally immature individuals. It was our aim to investigate the graft remodelling process following an autologous, transphyseal reconstruction of the anterior cruciate ligament (ACL) in skeletally immature sheep. We hypothesized that the ligamentisation process in immature sheep is quicker and more complete when compared to adult sheep.

Materials and methods

Skeletally immature sheep with an age of 4 months underwent a fully transphyseal ACL reconstruction using an autologous tendon. The animals were subsequently sacrificed at 3, 6, 12 and 24 weeks following surgery. Each group was characterised histomorphometrically, by immunostaining (VEGF, SMA), by transmission electron microscopy (TEM) and biomechanically (UFS Roboter).


The histomorphometric analysis and presence of VEGF and SMA positive cells demonstrated a rapid return to a ligament like structure. The biomechanical analysis revealed an anteroposterior translation that was still increased even 6 months following surgery.


As in adult sheep models, the remodeling of a soft tissue graft used for ACL reconstruction results in a biomechanically inferior substitute. However, the immature tissue seems to remodel faster and more complete when compared to adults.


Anterior cruciate ligament ACL Knee Biomechanics Sheep Graft remodeling Histomorphology Immunohistochemistry Electron microscopy Skeletally immature 



The funding source of the present study was a research grant of the Research Commission of Hannover Medical School, Hannover, Germany. We gratefully acknowledge the help of Sabine Thoben and Alexandra Neddermann. The authors would like to thank Prof. Klaus Otto and Karl Napierski for their excellent animal care.


  1. 1.
    Amiel D, Kleiner JB, Akeson WH (1986) The natural history of the anterior cruciate ligament autograft of patellar tendon origin. Am J Sports Med 14:449–462. doi: 10.1177/036354658601400603 PubMedCrossRefGoogle Scholar
  2. 2.
    Amiel D, Kleiner JB, Roux RD et al (1986) The phenomenon of ligamentization: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4:162–172. doi: 10.1002/jor.1100040204 PubMedCrossRefGoogle Scholar
  3. 3.
    Arnoczky SP, Warren RF, Ashlock MA (1986) Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study. J Bone Joint Surg Am 68:376–385PubMedGoogle Scholar
  4. 4.
    Aronowitz ER, Ganley TJ, Goode JR et al (2000) Anterior cruciate ligament reconstruction in adolescents with open physes. Am J Sports Med 28:168–175PubMedGoogle Scholar
  5. 5.
    Bales CP, Guettler JH, Moorman CT 3rd (2004) Anterior cruciate ligament injuries in children with open physes: evolving strategies of treatment. Am J Sports Med 32:1978–1985. doi: 10.1177/0363546504271209 PubMedCrossRefGoogle Scholar
  6. 6.
    Behr CT, Potter HG, Paletta GA Jr (2001) The relationship of the femoral origin of the anterior cruciate ligament and the distal femoral physeal plate in the skeletally immature knee. An anatomic study. Am J Sports Med 29:781–787PubMedGoogle Scholar
  7. 7.
    Bosch U, Decker B, Moller HD et al (1995) Collagen fibril organization in the patellar tendon autograft after posterior cruciate ligament reconstruction. A quantitative evaluation in a sheep model. Am J Sports Med 23:196–202. doi: 10.1177/036354659502300212 PubMedCrossRefGoogle Scholar
  8. 8.
    Clancy WG Jr, Narechania RG, Rosenberg TD et al (1981) Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Joint Surg Am 63:1270–1284PubMedGoogle Scholar
  9. 9.
    Cummings JF, Grood ES (2002) The progression of anterior translation after anterior cruciate ligament reconstruction in a caprine model. J Orthop Res 20:1003–1008. doi: 10.1016/S0736-0266(02)00033-5 PubMedCrossRefGoogle Scholar
  10. 10.
    Edwards PH, Grana WA (2001) Anterior cruciate ligament reconstruction in the immature athlete: long-term results of intra-articular reconstruction. Am J Knee Surg 14:232–237PubMedGoogle Scholar
  11. 11.
    Fenwick SA, Hazleman BL, Riley GP (2002) The vasculature and its role in the damaged and healing tendon. Arthritis Res 4:252–260. doi: 10.1186/ar416 PubMedCrossRefGoogle Scholar
  12. 12.
    Hunt P, Scheffler SU, Unterhauser FN et al (2005) A model of soft-tissue graft anterior cruciate ligament reconstruction in sheep. Arch Orthop Trauma Surg 125:238–248. doi: 10.1007/s00402-004-0643-z PubMedCrossRefGoogle Scholar
  13. 13.
    Jackson DW, Grood ES, Goldstein JD et al (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21:176–185. doi: 10.1177/036354659302100203 PubMedCrossRefGoogle Scholar
  14. 14.
    Koman JD, Sanders JO (1999) Valgus deformity after reconstruction of the anterior cruciate ligament in a skeletally immature patient. A case report. J Bone Joint Surg Am 81:711–715PubMedGoogle Scholar
  15. 15.
    Lo IK, Ou Y, Rattner JP et al (2002) The cellular networks of normal ovine medial collateral and anterior cruciate ligaments are not accurately recapitulated in scar tissue. J Anat 200:283–296. doi: 10.1046/j.1469-7580.2002.00024.x PubMedCrossRefGoogle Scholar
  16. 16.
    McIntosh AL, Dahm DL, Stuart MJ (2006) Anterior cruciate ligament reconstruction in the skeletally immature patient. Arthroscopy 22:1325–1330. doi: 10.1016/j.arthro.2006.07.014 PubMedGoogle Scholar
  17. 17.
    Melrose J, Smith S, Little CB et al (2002) Spatial and temporal localization of transforming growth factor-beta, fibroblast growth factor-2, and osteonectin, and identification of cells expressing alpha-smooth muscle actin in the injured anulus fibrosus: implications for extracellular matrix repair. Spine 27:1756–1764. doi: 10.1097/00007632-200208150-00014 PubMedCrossRefGoogle Scholar
  18. 18.
    Murray MM, Spector M (1999) Fibroblast distribution in the anteromedial bundle of the human anterior cruciate ligament: the presence of alpha-smooth muscle actin-positive cells. J Orthop Res 17:18–27. doi: 10.1002/jor.1100170105 PubMedCrossRefGoogle Scholar
  19. 19.
    Nottage WM, Matsuura PA (1994) Management of complete traumatic anterior cruciate ligament tears in the skeletally immature patient: current concepts and review of the literature. Arthroscopy 10:569–573. doi: 10.1016/S0749-8063(05)80016-7 PubMedGoogle Scholar
  20. 20.
    Petersen W, Unterhauser F, Pufe T et al (2003) The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Arch Orthop Trauma Surg 123:168–174PubMedGoogle Scholar
  21. 21.
    Schindhelm K, Rogers GJ, Milthorpe BK et al (1991) Autograft and Leeds-Keio reconstructions of the ovine anterior cruciate ligament. Clin Orthop Relat Res 267:278–293Google Scholar
  22. 22.
    Scranton PE Jr, Lanzer WL, Ferguson MS et al (1998) Mechanisms of anterior cruciate ligament neovascularization and ligamentization. Arthroscopy 14:702–716. doi: 10.1016/S0749-8063(98)70097-0 PubMedGoogle Scholar
  23. 23.
    Seil R, Kohn D (2000) Ruptures of the anterior cruciate ligament (ACL) during growth. Bull Soc Sci Med Grand Duche Luxemb 1:39–53Google Scholar
  24. 24.
    Seil R, Pape D, Kohn D (2008) The risk of growth changes during transphyseal drilling in sheep with open physes. Arthroscopy 24:824–833. doi: 10.1016/j.arthro.2008.02.007 PubMedGoogle Scholar
  25. 25.
    Shrive N, Chimich D, Marchuk L et al (1995) Soft-tissue flaws are associated with the material properties of the healing rabbit medial collateral ligament. J Orthop Res 13:923–929. doi: 10.1002/jor.1100130617 PubMedCrossRefGoogle Scholar
  26. 26.
    Simonian PT, Metcalf MH, Larson RV (1999) Anterior cruciate ligament injuries in the skeletally immature patient. Am J Orthop 28:624–628PubMedGoogle Scholar
  27. 27.
    Weibel ER (1981) Stereological methods in cell biology: where are we—where are we going? J Histochem Cytochem 29:1043–1052PubMedGoogle Scholar
  28. 28.
    Weiler A, Forster C, Hunt P et al (2004) The influence of locally applied platelet-derived growth factor-BB on free tendon graft remodeling after anterior cruciate ligament reconstruction. Am J Sports Med 32:881–891. doi: 10.1177/0363546503261711 PubMedCrossRefGoogle Scholar
  29. 29.
    Weiler A, Peine R, Pashmineh-Azar A et al (2002) Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:113–123. doi: 10.1053/jars.2002.30656 PubMedCrossRefGoogle Scholar
  30. 30.
    Weiler A, Unterhauser FN, Bail HJ et al (2002) Alpha-smooth muscle actin is expressed by fibroblastic cells of the ovine anterior cruciate ligament and its free tendon graft during remodeling. J Orthop Res 20:310–317. doi: 10.1016/S0736-0266(01)00109-7 PubMedCrossRefGoogle Scholar
  31. 31.
    Woo SL, Abramowitch SD, Kilger R et al (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39:1–20. doi: 10.1016/j.jbiomech.2004.10.025 PubMedCrossRefGoogle Scholar
  32. 32.
    Woo SL, Ohland KJ, Weiss JA (1990) Aging and sex-related changes in the biomechanical properties of the rabbit medial collateral ligament. Mech Ageing Dev 56:129–142. doi: 10.1016/0047-6374(90)90004-Y PubMedCrossRefGoogle Scholar
  33. 33.
    Yoshikawa T, Tohyama H, Katsura T et al (2006) Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstruction in sheep. Am J Sports Med 34:1918–1925. doi: 10.1177/0363546506294469 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Rupert Meller
    • 1
  • G. Brandes
    • 2
  • C. Drögemüller
    • 3
  • F. Fritz
    • 1
  • F. Schiborra
    • 1
  • M. Fehr
    • 4
  • S. Hankemeier
    • 1
  • C. Krettek
    • 1
  • C. Hurschler
    • 5
  1. 1.Trauma DepartmentHannover Medical School (MHH)HannoverGermany
  2. 2.Institute of Cell Biology, Center of AnatomyHannover Medical SchoolHannoverGermany
  3. 3.Institutes for Animal Breeding and GeneticsUniversity of Veterinary Medicine HannoverHannoverGermany
  4. 4.Small Animal ClinicUniversity of Veterinary Medicine HannoverHannoverGermany
  5. 5.Orthopaedic DepartmentHannover Medical SchoolHannoverGermany

Personalised recommendations