Archives of Orthopaedic and Trauma Surgery

, Volume 129, Issue 6, pp 747–752 | Cite as

Remodeling potentials of biphasic calcium phosphate granules in open wedge high tibial osteotomy

  • Metin Ozalay
  • Orcun Sahin
  • Sercan Akpinar
  • Gurkan Ozkoc
  • Murat Cinar
  • Necip Cesur
Orthopaedic Surgery



Biphasic calcium phosphate (BCP) has proved to be an effective bone substitute, but it’s effectiveness and remodeling potential in open wedge high tibial osteotomy (OWHTO) has not been analyzed yet. This study sought to evaluate the bone healing and remodeling potentials of BCP granules using a radiographic rating system in biplanar OWHTO.

Materials and methods

Fifteen patients (15 knees) underwent biplanar OWHTO. Bone gaps were filled with BCP granules. For radiographic evaluation, remodeling was divided into four phases. Phase 1 was accepted as rounded osteotomy sites, with clear distinction between BCP and bone, phase 2 was accepted as whitened osteotomy sites, with distinction between BCP and bone still visible, phase 3 was accepted as distinction between BCP and bone not visible and cloudy bone formation and phase 4 was accepted as full reformation of BCP granules (4A-BCP visible, 4B-disappearence of BCP) with no sign of osteotomy. Bone union was confirmed with clinical (full weight bearing without pain) and radiographic evaluation (cortical bridging callus on radiographs and phase 3 or greater remodeling). The time to full remodeling and the starting point of the consolidation on anteroposterior radiographs were noted. Complications were also noted at each clinical follow-up.


Mean follow-up was 27.2 months. The mean age was 55.8 years. At clinical follow-up, there were no wound healing problems, no loss of corrections, no infections, and no complications. All osteotomies successfully healed. According to the radiologic classification system, at the 6th week, 73.3% (11/15) of patients were in phase 1 and the remaining 26.7% (4/15) were in phase 2. At 12-month follow-up, 46.7 (7/15) of the patients were still in phase 3. After 2 years, all radiographs showed to be in phase 4A. Radiographic union was noted to progress from lateral to medial and finally central.


BCP can be successfully used as a bone substitute. The radiographic remodeling and consolidation process of BCP was found to be different from that of beta-tricalcium phosphate. In our patients with more than 2 years of follow-up, BCP granules did not completely remodel. As a result, this clinical study demonstrated that calcium phosphate granules containing hydroxyapatite had a long period of “creeping substitution” that lasts longer than 2 years.


High tibial osteotomy Biphasic calcium phosphate Remodeling Radiology 


  1. 1.
    Adili A, Bhandari M, Giffin R, Whately C, Kwok DC (2002) Valgus high tibial osteotomy. Comparison between an Ilizarov and a Coventry wedge technique for the treatment of medial compartment osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 10:169–176. doi:10.1007/s00167-001-0250-2 PubMedCrossRefGoogle Scholar
  2. 2.
    Aglietti P, Buzzi R, Vena LM, Baldini A, Mondaini A (2003) High tibial valgus osteotomy for medial gonarthrosis: a 10- to 21-year study. J Knee Surg 16:21–26PubMedGoogle Scholar
  3. 3.
    Ahlback S (1968) Osteoarthrosis of the knee. A radiographic investigation. Acta Radiol Diagn (Stockh) Suppl 277:7–72Google Scholar
  4. 4.
    Amendola A, Fowler PJ, Litchfield R, Kirkley S, Clatworthy M (2004) Opening wedge high tibial osteotomy using a novel technique: early results and complications. J Knee Surg 17:164–169PubMedGoogle Scholar
  5. 5.
    Cho DY, Lee WY, Sheu PC, Chen CC (2005) Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg Neurol 63:497–503. doi:10.1016/j.surneu.2004.10.016 discussion 503–494PubMedCrossRefGoogle Scholar
  6. 6.
    Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19:1473–1478. doi:10.1016/S0142-9612(98)00061-1 PubMedCrossRefGoogle Scholar
  7. 7.
    Daculsi G, LeGeros RZ, Mitre D (1989) Crystal dissolution of biological and ceramic apatites. Calcif Tissue Int 45:95–103. doi:10.1007/BF02561408 PubMedCrossRefGoogle Scholar
  8. 8.
    Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 23:883–894. doi:10.1002/jbm.820230806 PubMedCrossRefGoogle Scholar
  9. 9.
    Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S (1990) Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 24:379–396. doi:10.1002/jbm.820240309 PubMedCrossRefGoogle Scholar
  10. 10.
    Dehoux E, Madi K, Fourati E, Mensa C, Segal P (2005) High tibial open-wedge osteotomy using a tricalcium phosphate substitute: 70 cases with 18 months mean follow-up. Rev Chir Orthop Reparatrice Appar Mot 91:143–148. doi:10.1016/S0035-1040(05)84292-8 PubMedGoogle Scholar
  11. 11.
    Ducheyne P, Qiu Q (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303. doi:10.1016/S0142-9612(99)00181-7 PubMedCrossRefGoogle Scholar
  12. 12.
    Dupraz A, Delecrin J, Moreau A, Pilet P, Passuti N (1998) Long-term bone response to particulate injectable ceramic. J Biomed Mater Res 42:368–375. doi:10.1002/(SICI)1097-4636(19981205)42:3<368::AID-JBM4>3.0.CO;2-HPubMedCrossRefGoogle Scholar
  13. 13.
    Gaasbeek RD, Toonen HG, van Heerwaarden RJ, Buma P (2005) Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials 26:6713–6719. doi:10.1016/j.biomaterials.2005.04.056 PubMedCrossRefGoogle Scholar
  14. 14.
    Heary RF, Schlenk RP, Sacchieri TA, Barone D, Brotea C (2002) Persistent iliac crest donor site pain: independent outcome assessment. Neurosurgery 50:510–516. doi:10.1097/00006123-200203000-00015 discussion 516–517PubMedCrossRefGoogle Scholar
  15. 15.
    Hernigou P, Ma W (2001) Open wedge tibial osteotomy with acrylic bone cement as bone substitute. Knee 8:103–110. doi:10.1016/S0968-0160(00)00061-2 PubMedCrossRefGoogle Scholar
  16. 16.
    Koshino T, Murase T, Takagi T, Saito T (2001) New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patients with osteoarthritis. Biomaterials 22:1579–1582. doi:10.1016/S0142-9612(00)00318-5 PubMedCrossRefGoogle Scholar
  17. 17.
    Koshino T, Murase T, Saito T (2003) Medial opening-wedge high tibial osteotomy with use of porous hydroxyapatite to treat medial compartment osteoarthritis of the knee. J Bone Joint Surg Am 85-A:78–85PubMedGoogle Scholar
  18. 18.
    LeGeros RZ (1988) Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res 2:164–180PubMedGoogle Scholar
  19. 19.
    LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 14:201–209. doi:10.1023/A:1022872421333 PubMedCrossRefGoogle Scholar
  20. 20.
    Leutloff D, Tobian F, Perka C (2001) High tibial osteotomy for valgus and varus deformities of the knee. Int Orthop 25:93–96. doi:10.1007/s002640100244 PubMedCrossRefGoogle Scholar
  21. 21.
    Lobenhoffer P, Agneskirchner JD (2003) Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 11:132–138PubMedGoogle Scholar
  22. 22.
    Manjubala I, Sastry TP, Kumar RV (2005) Bone in-growth induced by biphasic calcium phosphate ceramic in femoral defect of dogs. J Biomater Appl 19:341–360. doi:10.1177/0885328205048633 PubMedCrossRefGoogle Scholar
  23. 23.
    Muschik M, Ludwig R, Halbhubner S, Bursche K, Stoll T (2001) Beta-tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study. Eur Spine J 10(Suppl 2):S178–S184. doi:10.1007/s005860100271 PubMedCrossRefGoogle Scholar
  24. 24.
    Nakamura E, Mizuta H, Kudo S, Takagi K, Sakamoto K (2001) Open-wedge osteotomy of the proximal tibia hemicallotasis. J Bone Joint Surg Br 83:1111–1115. doi:10.1302/0301-620X.83B8.11993 PubMedCrossRefGoogle Scholar
  25. 25.
    Nery EB, LeGeros RZ, Lynch KL, Lee K (1992) Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J Periodontol 63:729–735PubMedGoogle Scholar
  26. 26.
    Ransford AO, Morley T, Edgar MA, Webb P, Passuti N, Chopin D, Morin C, Michel F, Garin C, Pries D (1998) Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J Bone Joint Surg Br 80:13–18. doi:10.1302/0301-620X.80B1.7276 PubMedCrossRefGoogle Scholar
  27. 27.
    Rejda BV, Peelen JG, de Groot K (1977) Tri-calcium phosphate as a bone substitute. J Bioeng 1:93–97PubMedGoogle Scholar
  28. 28.
    Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139. doi:10.1097/00007632-200301150-00008 PubMedCrossRefGoogle Scholar
  29. 29.
    Steffen T, Stoll T, Arvinte T, Schenk RK (2001) Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery. Eur Spine J 10(Suppl 2):S132–S140. doi:10.1007/s005860100325 PubMedCrossRefGoogle Scholar
  30. 30.
    van Hemert WL, Willems K, Anderson PG, van Heerwaarden RJ, Wymenga AB (2004) Tricalcium phosphate granules or rigid wedge preforms in open wedge high tibial osteotomy: a radiological study with a new evaluation system. Knee 11:451–456. doi:10.1016/j.knee.2004.08.004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Metin Ozalay
    • 1
  • Orcun Sahin
    • 1
  • Sercan Akpinar
    • 1
  • Gurkan Ozkoc
    • 1
  • Murat Cinar
    • 1
  • Necip Cesur
    • 1
  1. 1.Department of Orthopaedics and TraumatologyBaskent University HospitalAnkaraTurkey

Personalised recommendations