Archives of Orthopaedic and Trauma Surgery

, Volume 129, Issue 7, pp 901–907 | Cite as

Differences in patellofemoral contact stresses between mobile-bearing and fixed-bearing total knee arthroplasties: a dynamic in vitro measurement

  • Adrian Skwara
  • Carsten O. Tibesku
  • Sven Ostermeier
  • Christina Stukenborg-Colsman
  • Susanne Fuchs-Winkelmann
Orthopaedic Surgery



Anterior knee pain is one of the most common problems after total knee arthroplasty (TKA). Mobile-bearing designs should improve patella tracking with a reduced rate of patella tilt as well as reduced patellofemoral contact stresses and improve knee flexion. The aim of this dynamic in vitro investigation was to evaluate the changes of patellofemoral contact stresses after TKA using fixed and mobile-bearing designs.

Materials and methods

Seven knee specimens were mounted into a knee simulator imitating an isokinetic extension of the knee. The patellofemoral contact was measured before and after tricompartimental TKA with fixed and mobile-bearing designs using pressure-sensitive films. Contact stresses were measured from 120° knee flexion to full extension with a simulated force of the quadriceps muscle up to 1,200 N. Additionally all measurements were performed with simulated co-contraction of the hamstrings muscles.


Fixed-bearing TKA increases patellofemoral contact stresses compared to physiologic conditions. After patella resurfacing, contact stresses increase even more. By changing the prosthesis design to mobile bearing, maximum contact stress was measured to be punctual higher than in fixed-bearing implants. In the interval between 0°–30° and 70°–105° of flexion, obviously lower pressures were evaluated for the mobile-bearing design. With cocontraction of the hamstrings, a lower contact stress of the mobile-bearing design was evident for the complete measurement of the knee extension.


An increase of patellofemoral contact stresses after patellar resurfacing in TKA could be demonstrated. This outcome implicates a higher risk of patellofemoral complications. The mobile-bearing design showed evidently lower patellofemoral contact stresses than the fixed-bearing design.


Arthroplasty Knee prosthesis Patellofemoral pressure Mobile-bearing Kinematics 


  1. 1.
    Barrack RL, Bertot AJ, Wolfe MW, Waldman DA, Milicic M, Myers L (2001) Patellar resurfacing in total knee arthroplasty. A prospective, randomized, double-blind study with five to seven years of follow-up. J Bone Joint Surg Am 83-A:1376–1381PubMedGoogle Scholar
  2. 2.
    Benjamin JB, Szivek JA, Hammond AS, Kubchandhani Z, Matthews AI Jr, Anderson P (1998) Contact areas and pressures between native patellas and prosthetic femoral components. J Arthroplasty 13:693–698. doi:10.1016/S0883-5403(98)80015-6 PubMedCrossRefGoogle Scholar
  3. 3.
    Bourne RB, Rorabeck CH, Vaz M, Kramer J, Hardie R, Robertson D (1995) Resurfacing versus not resurfacing the patella during total knee replacement. Clin Orthop Relat Res 321:156–161PubMedGoogle Scholar
  4. 4.
    Boyd AD Jr, Ewald FC, Thomas WH, Poss R, Sledge CB (1993) Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg Am 75:674–681PubMedGoogle Scholar
  5. 5.
    Campbell DG, Mintz AD, Stevenson TM (1995) Early patellofemoral revision following total knee arthroplasty. J Arthroplasty 10:287–291PubMedGoogle Scholar
  6. 6.
    Chowdhury EA, Porter ML (2005) A study of the effect of tibial tray rotation on a specific mobile bearing total knee arthroplasty. J Arthroplasty 20:793–797. doi:10.1016/j.arth.2004.12.058 PubMedCrossRefGoogle Scholar
  7. 7.
    Delport HP, Banks SA, De Schepper J, Bellemans J (2006) A kinematic comparison of fixed- and mobile-bearing knee replacements. J Bone Joint Surg Br 88:1016–1021. doi:10.1302/0301-620X.88B8.17529 PubMedCrossRefGoogle Scholar
  8. 8.
    Draganich LF, Piotrowski GA, Martell J, Pottenger LA (2002) The effects of early rollback in total knee arthroplasty on stair stepping. J Arthroplasty 17:723–730. doi:10.1054/arth.2002.33558 PubMedCrossRefGoogle Scholar
  9. 9.
    Enis JE, Gardner R, Robledo MA, Latta L, Smith R (1990) Comparison of patellar resurfacing versus nonresurfacing in bilateral total knee arthroplasty. Clin Orthop Relat Res 260:38–42PubMedGoogle Scholar
  10. 10.
    Fuchs S, Schutte G, Witte H (1999) Effect of knee joint flexion and femur rotation on retropatellar contact of the human knee joint. Biomed Tech (Berl) 44:334–338CrossRefGoogle Scholar
  11. 11.
    Fuchs S, Schutte G, Witte H, Rosenbaum D (2000) Retropatellar contact characteristics in total knee arthroplasty with and without patellar resurfacing. Int Orthop 24:191–193. doi:10.1007/s002640000140 PubMedCrossRefGoogle Scholar
  12. 12.
    Fuchs S, Schutte G, Witte H, Rosenbaum D (2002) What influence do size and placement of patella resurfacing have on knee endoprosthesis? Unfallchirurg 105:44–48. doi:10.1007/s113-002-8164-0 PubMedCrossRefGoogle Scholar
  13. 13.
    Fuchs S, Schutte G, Witte H, Rosenbaum D (2000) What retropatellar changes result by implantation of a superficial knee joint prosthesis? Unfallchirurg 103:972–976. doi:10.1007/s001130050655 PubMedCrossRefGoogle Scholar
  14. 14.
    Fuchs S, Skwara A, Tibesku CO, Rosenbaum D (2005) Retropatellar contact characteristics before and after total knee arthroplasty. Knee 12:9–12. doi:10.1016/S0968-0160(02)00045-5 PubMedCrossRefGoogle Scholar
  15. 15.
    Harwin SF (1998) Patellofemoral complications in symmetrical total knee arthroplasty. J Arthroplasty 13:753–762. doi:10.1016/S0883-5403(98)90026-2 PubMedCrossRefGoogle Scholar
  16. 16.
    Heegaard J, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28:1265–1279. doi:10.1016/0021-9290(95)00059-Q PubMedCrossRefGoogle Scholar
  17. 17.
    Li G, DeFrate LE, Zayontz S, Park SE, Gill TJ (2004) The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. J Orthop Res 22:801–806. doi:10.1016/j.orthres.2003.11.011 PubMedCrossRefGoogle Scholar
  18. 18.
    Matsuda S, Ishinishi T, White SE, Whiteside LA (1997) Patellofemoral joint after total knee arthroplasty. Effect on contact area and contact stress. J Arthroplasty 12:790–797. doi:10.1016/S0883-5403(97)90010-3 PubMedCrossRefGoogle Scholar
  19. 19.
    McNamara JL, Collier JP, Mayor MB, Jensen RE (1994) A comparison of contact pressures in tibial and patellar total knee components before and after service in vivo. Clin Orthop Relat Res 299:104–113PubMedGoogle Scholar
  20. 20.
    Mockford BJ, Beverland DE (2005) Secondary resurfacing of the patella in mobile-bearing total knee arthroplasty. J Arthroplasty 20:898–902. doi:10.1016/j.arth.2005.02.009 PubMedCrossRefGoogle Scholar
  21. 21.
    Muoneke HE, Khan AM, Giannikas KA, Hagglund E, Dunningham TH (2003) Secondary resurfacing of the patella for persistent anterior knee pain after primary knee arthroplasty. J Bone Joint Surg Br 85:675–678PubMedGoogle Scholar
  22. 22.
    Murray DG, Webster DA (1981) The variable-axis knee prosthesis. Two-year follow-up study. J Bone Joint Surg Am 63:687–694PubMedGoogle Scholar
  23. 23.
    Nizard RS, Biau D, Porcher R, et al. (2005) A meta-analysis of patellar replacement in total knee arthroplasty. Clin Orthop Relat Res 196–203. doi:10.1097/01.blo.0000150348.17123.7f
  24. 24.
    Ostermeier S, Buhrmester O, Hurschler C, Stukenborg-Colsman C (2005) Dynamic in vitro measurement of patellar movement after total knee arthroplasty: an in vitro study. BMC Musculoskelet Disord 6:30. doi:10.1186/1471-2474-6-30 PubMedCrossRefGoogle Scholar
  25. 25.
    Ostermeier S, Holst M, Bohnsack M, Hurschler C, Stukenborg-Colsman C, Wirth CJ (2007) Dynamic measurement of patellofemoral contact pressure following reconstruction of the medial patellofemoral ligament: an in vitro study. Clin Biomech (Bristol Avon) 22:327–335. doi:10.1016/j.clinbiomech.2006.10.002 CrossRefGoogle Scholar
  26. 26.
    Ostermeier S, Hurschler C, Stukenborg-Colsman C (2004) Quadriceps function after TKA–an in vitro study in a knee kinematic simulator. Clin Biomech (Bristol Avon) 19:270–276. doi:10.1016/j.clinbiomech.2003.11.006 CrossRefGoogle Scholar
  27. 27.
    Ostermeier S, Schlomach C, Hurschler C, Windhagen H, Stukenborg-Colsman C (2006) Dynamic in vitro measurement of posterior cruciate ligament load and tibiofemoral stress after TKA in dependence on tibiofemoral slope. Clin Biomech (Bristol Avon) 21:525–532. doi:10.1016/j.clinbiomech.2005.12.019 CrossRefGoogle Scholar
  28. 28.
    Pagnano MW, Trousdale RT, Stuart MJ, Hanssen AD, Jacofsky DJ (2004) Rotating platform knees did not improve patellar tracking: a prospective, randomized study of 240 primary total knee arthroplasties. Clin Orthop Relat Res 221–227. doi:10.1097/01.blo.0000148892.31464.81
  29. 29.
    Parvizi J, Rapuri VR, Saleh KJ, Kuskowski MA, Sharkey PF, Mont MA (2005) Failure to resurface the patella during total knee arthroplasty may result in more knee pain and secondary surgery. Clin Orthop Relat Res 438:191–196. doi:10.1097/01.blo.0000166903.69075.8d PubMedCrossRefGoogle Scholar
  30. 30.
    Picetti GD 3rd, McGann WA, Welch RB (1990) The patellofemoral joint after total knee arthroplasty without patellar resurfacing. J Bone Joint Surg Am 72:1379–1382PubMedGoogle Scholar
  31. 31.
    Ranawat CS (2002) History of total knee replacement. J South Orthop Assoc 11:218–226PubMedGoogle Scholar
  32. 32.
    Ranawat CS (1986) The patellofemoral joint in total condylar knee arthroplasty. Pros and cons based on five- to ten-year follow-up observations. Clin Orthop Relat Res 205:93–99PubMedGoogle Scholar
  33. 33.
    Ranawat CS, Boachie-Adjei O (1988) Survivorship analysis and results of total condylar knee arthroplasty. Eight- to 11-year follow-up period. Clin Orthop Relat Res 226:6–13Google Scholar
  34. 34.
    Stiehl JB, Dennis DA, Komistek RD, Keblish PA (1997) In vivo kinematic analysis of a mobile bearing total knee prosthesis. Clin Orthop Relat Res 345:60–66PubMedCrossRefGoogle Scholar
  35. 35.
    Stukenborg-Colsman C, Ostermeier S, Burmester O, Wirth CJ (2003) Dynamic in vitro measurement of retropatellar pressure after knee arthroplasty. Orthopade 32:319–322. doi:10.1007/s00132-002-0442-6 PubMedCrossRefGoogle Scholar
  36. 36.
    Stukenborg-Colsman C, Ostermeier S, Hurschler C, Wirth CJ (2002) Tibiofemoral contact stress after total knee arthroplasty: comparison of fixed and mobile-bearing inlay designs. Acta Orthop Scand 73:638–646. doi:10.1080/000164702321039598 PubMedCrossRefGoogle Scholar
  37. 37.
    Takeuchi T, Lathi VK, Khan AM, Hayes WC (1995) Patellofemoral contact pressures exceed the compressive yield strength of UHMWPE in total knee arthroplasties. J Arthroplasty 10:363–368. doi:10.1016/S0883-5403(05)80186-X PubMedCrossRefGoogle Scholar
  38. 38.
    von Spreckelsen L, Hahne HJ, Hassenpflug J (1998) Patellofemoral contact zones in knee endoprostheses. Z Orthop Ihre Grenzgeb 136:560–565CrossRefGoogle Scholar
  39. 39.
    Waters TS, Bentley G (2003) Patellar resurfacing in total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg Am 85-A:212–217PubMedGoogle Scholar
  40. 40.
    Whiteside LA, Nakamura T (2003) Effect of femoral component design on unresurfaced patellas in knee arthroplasty. Clin Orthop Relat Res 189–198. doi:10.1097/01.blo.0000063605.67412.4d
  41. 41.
    Wood DJ, Smith AJ, Collopy D, White B, Brankov B, Bulsara MK (2002) Patellar resurfacing in total knee arthroplasty: a prospective, randomized trial. J Bone Joint Surg Am 84-A:187–193PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Adrian Skwara
    • 1
  • Carsten O. Tibesku
    • 2
  • Sven Ostermeier
    • 3
  • Christina Stukenborg-Colsman
    • 3
  • Susanne Fuchs-Winkelmann
    • 1
  1. 1.Department of Orthopaedics and RheumatologyUniversity Hospital MarburgMarburgGermany
  2. 2.sporthopaedicum StraubingStraubingGermany
  3. 3.Department of OrthopaedicsMedical School Hannover (MHH)HannoverGermany

Personalised recommendations