Archives of Orthopaedic and Trauma Surgery

, Volume 126, Issue 2, pp 93–100 | Cite as

Assessment of bone quality in the proximal humerus by measurement of the contralateral site: a cadaveric analyze

  • Gerd Diederichs
  • Jan Korner
  • Jörg Goldhahn
  • Berend Linke
Original Article


Introduction: The presence of osteoporosis decreases the success of osteosynthesis, especially in the proximal humerus. Estimation of the bone mineral density (BMD) at the fracture site could aid in the decision making for surgical treatment and potential implant choice with regard to the individual bone properties. BMD measurement at a fracture site is prone to inaccuracies and alternative measurement sites need to be identified. In the case of a proximal humerus fracture, promising alternative measurement sites are at the same contralateral or at a different ipsilateral location. The aim of this study was to determine if the BMD for the humeral head can be predicted by BMD measurements from the ipsilateral distal humerus or the contralateral proximal humerus. Material and methods: Cancellous BMD values were obtained from 88 paired human cadaver humeri (age 75.8±13.5 years) at the humeral head and at the distal metaphyseal area by pQCT. Correlations between BMD values of the ipsi- and contralateral sites were computed. Results: Correlations between proximal and distal BMD values within one bone were moderate for both left (R2=0.37) and right humeri (R2=0.40). BMD comparison between left and right humeri revealed high correlations for both the distal (R2=0.90) and the proximal humerus (R2=0.74) (all P<0.01). Elderly specimen (≥70 years) showed better intersite correlations between all regions than younger specimen (<70 years). Conclusion: High correlations between contralateral BMD values may be the result of similar biomechanical loading conditions. Although a relationship between proximal and distal bone quality of the same bone was found, the moderate coefficient suggests that ipsilateral measurements do not provide a good prediction of humeral head BMD. Bone quality at the humeral head is best predicted by BMD measurements at the contralateral location rather than the ipsilateral distal site.


BMD Bone quality Humerus fracture Osteosynthesis Osteoporosis 



The authors wish to thank R. Schoch, Institute for Pathology Basel, for the support and Rosemary Thompson for final revision.


  1. 1.
    Abrahamsen B, Hansen TB, Jensen LB, Hermann AP, Eiken P (1997) Site of osteodensitometry in perimenopausal women: correlation and limits of agreement between anatomic regions. J Bone Miner Res 12:1471–1479PubMedCrossRefGoogle Scholar
  2. 2.
    Amling M, Herden S, Posl M, Hahn M, Ritzel H, Delling G (1996) Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Miner Res 11:36–45PubMedGoogle Scholar
  3. 3.
    Broadbent MR, Quaba O, Hadjucka C, McQueen MM (2003) The epidemiology of multifocal upper limb fractures. Scand J Surg 92:220–223PubMedGoogle Scholar
  4. 4.
    Cheng XG, Lowet G, Boonen S, Nicholson PH, Van der Perre G, Dequeker J (1998) Prediction of vertebral and femoral strength in vitro by bone mineral density measured at different skeletal sites. J Bone Miner Res 13:1439–1443PubMedCrossRefGoogle Scholar
  5. 5.
    Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB (1991) Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 9:674–682Google Scholar
  6. 6.
    Eckstein F, Lochmüller EM, Lill CA, Kuhn V, Schneider E, Delling G, Müller R (2002) Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site-specific bone densitometry. J Bone Miner Res 17:162–171PubMedCrossRefGoogle Scholar
  7. 7.
    Fankhauser F, Schippinger G, Weber K, Heinz S, Quehenberger F, Boldin C, Bratschisch G, Szyszkowitz R, Georg L, Friedrich A (2003) Cadaveric-biomechanical evaluation of bone-implant construct of proximal humerus fractures (Neer type 3). J Trauma 55:345–349. DOI 10.1097/01.TA.0000033139.61038.EFGoogle Scholar
  8. 8.
    Frankle M, Herscovici DJ, DiPasquale TG, Vasey MB, Sanders RW (2003) A comparison of open reduction and internal fixation and primary total elbow arthroplasty in the treatment of intraarticular distal humerus fractures in women older than age 65. J Orthop Trauma 17:473–480PubMedCrossRefGoogle Scholar
  9. 9.
    Goodsitt MM, Christodoulou EG, Larson SC, Kazeroonie EA (2001) Assessment of calibration methods for estimating bone mineral densities in trauma patients with quantitative CT: an anthropomorphic phantom study. Acad Radiol 8:822–834PubMedCrossRefGoogle Scholar
  10. 10.
    Groll O, Lochmüller EM, Bachmeier M, Willnecker J, Eckstein F (1999) Precision and intersite correlation of bone densitometry at the radius, tibia and femur with peripheral quantitative CT. Skeletal Radiol 28:696–702. DOI 10.1007/s002560050576Google Scholar
  11. 11.
    Haapamaki VV, Kiuru MJ, Koskinen SK (2004) Multidetector CT in shoulder fractures. Emerg Radiol 11:89–94. DOI 10.1007/s 10140-004-0376-xGoogle Scholar
  12. 12.
    Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357PubMedCrossRefGoogle Scholar
  13. 13.
    Hepp P, Lill H, Bail H, Korner J, Niederhagen M, Haas NP, Josten C, Duda GN (2003) Where should implants be anchored in the humeral head? Clin Orthop 415:139–147. DOI 10.1097/01.blo.0000092968.12414.a8Google Scholar
  14. 14.
    Hertel R (2004) Fractures of the proximal humerus in osteoporotic bone. Osteoporos Int 16(Suppl 2):1–9. DOI 10.1007/s 00198-004-1714-2Google Scholar
  15. 15.
    Huopio J, Kroger H, Honkanen R, Saarikoski S, Alhava E (2000) Risk factors for perimenopausal fractures: a prospective study. Osteoporos Int 11:219–227. DOI 10.1007/s001980050284Google Scholar
  16. 16.
    Kawashima T, Uhthoff HK (1991) Pattern of bone loss of the proximal femur: a radiologic, densitometric and histomorphometric study. J Orthop Res 9:634–640PubMedCrossRefGoogle Scholar
  17. 17.
    Koval KJ, Blair B, Takei R, Kummer FJ, Zuckerman JD (1996) Surgical neck fractures of the proximal humerus: a laboratory evaluation of ten fixation techniques. J Trauma 40:778–783PubMedGoogle Scholar
  18. 18.
    Kuiper JW, van Kuijk C, Grashuis JL, Ederveen AG, Schutte HE (1996) Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry of the femoral neck in vitro. Osteoporos int 6:25–30PubMedCrossRefGoogle Scholar
  19. 19.
    Lill H, Hepp P, Gowin W, Oestmann JW, Korner J, Haas NP, Josten C, Duda GN (2002) Age- and gender-related distribution of bone mineral density and mechanical properties of the proximal humerus. Rofo 174:1544–1550. DOI 10.1055/s-2002-35944Google Scholar
  20. 20.
    Lill H, Hepp P, Korner J, Kassi JP, Verheyden AP, Josten C, Duda GN (2003) Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch Orthop Trauma Surg 123:74–81. DOI 10.1007/s00402-002-0465-9Google Scholar
  21. 21.
    Link TM, Koppers BB, Licht T, Bauer J, Lu Y, Rummeny EJ (2004) In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology 231:805–811PubMedCrossRefGoogle Scholar
  22. 22.
    Maldonado ZM, Seebeck J, Heller MO, Brandt D, Hepp P, Lill H, Duda GN (2003) Straining of the intact and fractured proximal humerus under physiological-like loading. J Biomech 36:1865–1867 DOI 10.1016/S0021-9290(03)00212-4Google Scholar
  23. 23.
    Mosekilde L (2000) Age-related changes in bone mass, structure, and strength - effects of loading. Z Rheumatol 59(Suppl 1):1–9PubMedCrossRefGoogle Scholar
  24. 24.
    Nordin BE, Chatterton BE, Schultz CG, Need AG, Horowitz M (1996) Regional bone mineral density interrelationships in normal and osteoporotic postmenopausal women. J Bone MinerRes 11:849–856CrossRefGoogle Scholar
  25. 25.
    Olschewski E, Murray P, Buckley R, Fennell C, Powell JN (2001) Assessment of osteoporosis using standard radiographs of the wrist. J Trauma 51:912–916PubMedGoogle Scholar
  26. 26.
    Park MC, Murthi AM, Roth NS, Blaine TA, Levine WN, Bigliani LU (2003) Two-part and three-part fractures of the proximal humerus treated with suture fixation. J Orthop Trauma 17:319–325Google Scholar
  27. 27.
    Saitoh S, Nakatsuchi Y, Latta L, Milne E (1994) Distribution of bone mineral density and bone strength of the proximal humerus. J Shoulder Elbow Surg 3:234–242CrossRefGoogle Scholar
  28. 28.
    Seebeck J, Goldhahn J, Städele H, Messmer P, Morlock MM, Schneider E (2004) Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws. J Orthop Res 22:1237–1242. DOI 10.1016/j.orthres.2004.04.001Google Scholar
  29. 29.
    Szyszkowitz R, Segg W, Schleifer P, Cundy PJ (1993) Proximal humeral fractures. Management techniques and expected results. Clin Orthop 292:13–25PubMedGoogle Scholar
  30. 30.
    Tingart MJ, Apreleva M, von Stechow D, Zurakowski D, Warner JJ (2003) The cortical thickness of the proximal humeral diaphysis predicts bone mineral density of the proximal humerus. J Bone Joint Surg Br 85:611–617. DOI 10.1302/0301-620X.85B4.12843Google Scholar
  31. 31.
    Tingart MJ, Bouxsein ML, Zurakowski D, Warner JP, Apreleva M (2003) Three-Dimensional Distribution of Bone Density in the Proximal Humerus. Calcif Tissue Int 73:531–536PubMedGoogle Scholar
  32. 32.
    Wong M, Papa A, Lang T, Hodis HN, Labree L, Detrano R (2005) Validation of thoracic quantitative computed tomography as a method to measure bone mineral density. Calcif Tissue Int 76:7–10. DOI 10.1007/s00223-004-0020-5Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Gerd Diederichs
    • 1
    • 4
  • Jan Korner
    • 1
    • 2
  • Jörg Goldhahn
    • 1
    • 3
  • Berend Linke
    • 1
  1. 1.AO Research InstituteDavosSwitzerland
  2. 2.Clinic for Trauma and Reconstructive SurgeryUniversity of MainzMainzGermany
  3. 3.Schulthess ClinicZürichSwitzerland
  4. 4.Institute of RadiologyCharité Campus MitteBerlinGermany

Personalised recommendations