Archives of Orthopaedic and Trauma Surgery

, Volume 126, Issue 4, pp 228–234 | Cite as

Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement

  • V. Martinek
  • P. Ueblacker
  • K. Bräun
  • S. Nitschke
  • R. Mannhardt
  • K. Specht
  • B. Gansbacher
  • A. B. Imhoff
Original Article


Introduction: The options available after meniscus loss offer only limited chances for a long-term success. In the following experimental study, we investigated the effect of meniscus tissue engineering on properties of the collagen meniscus implant (CMI). Methods: Autologous fibrochondrocytes, obtained per biopsy from adult Merino sheep (n=25), were released from the matrix, cultured in-vitro and seeded into CMI scaffolds (n=10, group 1). Following a 3-week in-vitro culture, the tissue engineered menisci were used for autologous transplantation. Macroscopical and histological evaluation were performed in comparison with non-seeded CMI controls (n=10, group 2) and with meniscus-resected controls (n=5, group 3) after 3 weeks (each 1 animal group 1 and 2) and 3 months. Results: The lameness score did not show any difference between the groups. Meniscus tissue was found in seven knee joints (group 1), in five knee joints (group 2) and in two knee joints (group 3). The size of the transplants reduced from 25.9±4.5 to 20.1±10.8 mm (group 1) and from 25.9±1.5 to 14.4±12.5 mm (group 2). Histologically, enhanced vascularisation, accelerated scaffold re-modelling, higher content of extra-cellular matrix and lower cell number were noted in the pre-seeded menisci in comparison with non-seeded controls. Dense high-cellular fibrous scar tissue was found in two of five cases in the resection control group. Conclusion: Tissue engineering of meniscus with autologous fibrochondrocytes demonstrates a macroscopic and histological improvement of the transplants. However, further development of the methods, especially of the scaffold and of the cell-seeding procedure must prove the feasibility of this procedure for human applications.


Meniscus Tissue engineering Fibrochondrocyte Meniscus transplantation Meniscal reconstruction 


  1. 1.
    Arnoczky SP (1999) Building a meniscus. Biologic considerations. Clin Orthop 367(Suppl):S244–S253PubMedGoogle Scholar
  2. 2.
    Arnoczky SP, Warren RF, Spivak JM (1988) Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg [Am] 70(8):1209–1217Google Scholar
  3. 3.
    Bruns J, Kahrs J, Kampen J, Behrens P, Plitz W (1998) Autologous perichondral tissue for meniscal replacement. J Bone Joint Surg [Br] 80(5):918–923CrossRefGoogle Scholar
  4. 4.
    Cook JL, Tomlinson JL, Kreeger JM, Cook CR (1999) Induction of meniscal regeneration in dogs using a novel biomaterial. Am J Sports Med 27(5):658–665PubMedGoogle Scholar
  5. 5.
    de Boer HH, Koudstaal J (1994) Failed meniscus transplantation. A report of three cases. Clin Orthop 306:155–162PubMedGoogle Scholar
  6. 6.
    Fink C, Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Guilak F (2001) The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 9(5):481–487PubMedCrossRefGoogle Scholar
  7. 7.
    Gastel JA, Muirhead WR, Lifrak JT, Fadale PD, Hulstyn MJ, Labrador DP (2001) Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy 17(2):151–159PubMedCrossRefGoogle Scholar
  8. 8.
    Goble EM, Kohn D, Verdonk R, Kane SM (1999) Meniscal substitutes-human experience. Scand J Med Sci Sports 9(3):146–157PubMedGoogle Scholar
  9. 9.
    Green WT Jr (1971) Behavior of articular chondrocytes in cell culture. Clin Orthop 75:248–260PubMedCrossRefGoogle Scholar
  10. 10.
    Guilak F, Meyer BC, Ratcliffe A, Mow VC (1994) The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis Cartilage 2(2):91–101PubMedCrossRefGoogle Scholar
  11. 11.
    Ibarra C, Jannetta C, Vacanti CA, Cao Y, Kim TH, Upton J, Vacanti JP (1997) Tissue engineered meniscus: a potential new alternative to allogeneic meniscus transplantation. Transplant Proc 29(1–2):986–988PubMedCrossRefGoogle Scholar
  12. 12.
    Ibarra C, Koski JA, Warren RF (2000) Tissue engineering meniscus: cells and matrix. Orthop Clin North Am 31(3):411–418PubMedCrossRefGoogle Scholar
  13. 13.
    Jackson DW, McDevitt CA, Simon TM, Arnoczky SP, Atwell EA, Silvino NJ (1992) Meniscal transplantation using fresh and cryopreserved allografts. An experimental study in goats. Am J Sports Med 20(6):644–656PubMedCrossRefGoogle Scholar
  14. 14.
    Kasemkijwattana C, Menetrey J, Goto H, Niyibizi C, Fu FH, Huard J (1999) The use of growth factors, gene therapy and tissue engineering to improve meniscal healing. Trans Orthop Res Soc 45Google Scholar
  15. 15.
    Klompmaker J, Jansen HW, Veth RP, de Groot JH, Nijenhuis AJ, Pennings AJ (1991) Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. Biomaterials 12(9):810–816PubMedCrossRefGoogle Scholar
  16. 16.
    Kohn D, Rudert M, Wirth CJ, Plitz W, Reiss G, Maschek H (1997) Medial meniscus replacement by a fat pad autograft. An experimental study in sheep. Int Orthop 21(4):232–238PubMedCrossRefGoogle Scholar
  17. 17.
    Kohn D, Wirth CJ, Reiss G, Plitz W, Maschek H, Erhardt W, Wulker N (1992) Medial meniscus replacement by a tendon autograft. Experiments in sheep. J Bone Joint Surg [Br] 74(6):910–917Google Scholar
  18. 18.
    Kuhn JE, Wojtys EM (1996) Allograft meniscus transplantation. Clin Sports Med 15(3):537–546PubMedGoogle Scholar
  19. 19.
    Maitra RS, Miller MD, Johnson DL (1999) Meniscal reconstruction. Part II: Outcome, potential complications, and future directions. Am J Orthop 28(5):280–286PubMedGoogle Scholar
  20. 20.
    Martinek V, Fu F, Huard J (1999) Gene therapy and tissue engineering in sports medicine. The Physician and Sportsmedicine 28(2):34–51Google Scholar
  21. 21.
    Martinek V, Martinek S, Pelinkovic D, Hendi P, Celechovsky C, Fu FH, Huard J (2001) Proliferative stimulation of human fibrochondrocytes originating from the avascular zone wtih IGF-1, TGF-alpha and VEGF. J Jpn Orthop Assoc 75(2)Google Scholar
  22. 22.
    Martinek V, Ueblacker P, Imhoff AB (2003) Collagen Meniscus Implant (CMI) in combined knee surgery procedures. A clinical follow-up. Book of abstracts ACL study group meeting 2002, Vails, ColoradoGoogle Scholar
  23. 23.
    Martinek V, Usas A, Pelinkovic D, Robbins P, Fu FH, Huard J (2002) Genetic engineering of meniscal allografts. Tissue Eng 8(1):107–117PubMedCrossRefGoogle Scholar
  24. 24.
    Messner K (1999) Indications for meniscal transplantation. Who and how many need a meniscus substitute? A personal view. Scand J Med Sci Sports 9(3):184–188PubMedGoogle Scholar
  25. 25.
    Messner K (1999) Meniscal regeneration or meniscal transplantation? Scand J Med Sci Sports 9(3):162–167PubMedGoogle Scholar
  26. 26.
    Messner K, Kohn D, Verdonk R (1999) Future research in meniscal replacement. Scand J Med Sci Sports 9(3):181–183PubMedGoogle Scholar
  27. 27.
    Milachowski KA, Kohn D, Wirth CJ (1994) Transplantation of allogeneic menisci. Orthopade 23(2):160–163PubMedGoogle Scholar
  28. 28.
    Milachowski KA, Weismeier K, Wirth CJ (1989) Homologous meniscus transplantation. Experimental and clinical results. Int Orthop 13(1):1–11PubMedCrossRefGoogle Scholar
  29. 29.
    Noyes FR (1995) A histological study of failed human meniscal allograft. Oral presentation, speciality day 1995, arhroscopy association of North America, OrlandoGoogle Scholar
  30. 30.
    O’Driscoll SW (2001) Preclinical cartilage repair: current status and future perspectives. Clin Orthop 391(Suppl):S397–S401PubMedGoogle Scholar
  31. 31.
    Renstrom P, Johnson RJ (1990) Anatomy and biomechanics of the menisci. Clin Sports Med 9(3):523–538PubMedGoogle Scholar
  32. 32.
    Rodeo SA (2001) Meniscal allografts–where do we stand?. Am J Sports Med 29(2):246–261PubMedGoogle Scholar
  33. 33.
    Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren RF (2000) Histological analysis of human meniscal allografts. A preliminary report. J Bone Joint Surg [Am] 82-A(8):1071–1082Google Scholar
  34. 34.
    Rodkey WG (2002) Collagen meniscus implant (CMI): multicenter clinical trials update. ACL Study Group Meeting, March 2–8, Big Sky, MontanaGoogle Scholar
  35. 35.
    Rodkey WG, Steadman JR, Li ST (1999) A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop 367(Suppl):S281–S292PubMedGoogle Scholar
  36. 36.
    Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F (2003) Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308–313PubMedGoogle Scholar
  37. 37.
    Stone KR, Ayala G, Goldstein J, Hurst R, Walgenbach A, Galili U (1998) Porcine cartilage transplants in the cynomolgus monkey. III. Transplantation of alpha-galactosidase-treated porcine cartilage. Transplantation 65(12):1577–1583PubMedCrossRefGoogle Scholar
  38. 38.
    Stone KR, Rodkey WG, Webber R, McKinney L, Steadman JR (1992) Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am J Sports Med 20(2):104–111PubMedCrossRefGoogle Scholar
  39. 39.
    Stone KR, Steadman JR, Rodkey WG, Li ST (1997) Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone Joint Surg [Am] 79(12):1770–1777Google Scholar
  40. 40.
    Sweigart MA, Athanasiou KA (2001) Toward tissue engineering of the knee meniscus. Tissue Eng 7(2):111–129PubMedCrossRefGoogle Scholar
  41. 41.
    Szomor ZL, Martin TE, Bonar F, Murrell GA (2000) The protective effects of meniscal transplantation on cartilage. An experimental study in sheep. J Bone Joint Surg [Am] 82(1):80–88Google Scholar
  42. 42.
    van Arkel ER, de Boer HH (2002) Survival analysis of human meniscal transplantations. J Bone Joint Surg [Br] 84(2):227–231CrossRefGoogle Scholar
  43. 43.
    Veltri DM, Warren RF, Wickiewicz TL, O’Brien SJ (1994) Current status of allograft meniscal transplantation. Clin Orthop 303:44–55PubMedGoogle Scholar
  44. 44.
    Veth RP, Jansen HW, Leenslag JW, Pennings AJ, Hartel RM, Nielsen HK (1986) Experimental meniscal lesions reconstructed with a carbon fiber-polyurethane-poly(L-lactide) graft. Clin Orthop 202:286–293PubMedGoogle Scholar
  45. 45.
    Walsh CJ, Goodman D, Caplan AI, Goldberg VM (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5(4):327–337PubMedCrossRefGoogle Scholar
  46. 46.
    Webber RJ, Harris MG, Hough AJ (1985) Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res 3(1):36–42PubMedCrossRefGoogle Scholar
  47. 47.
    Webber RJ, Zitaglio T, Hough AJ Jr (1988) Serum-free culture of rabbit meniscal fibrochondrocytes: proliferative response. J Orthop Res 6(1):13–23PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • V. Martinek
    • 1
  • P. Ueblacker
    • 1
    • 4
  • K. Bräun
    • 1
  • S. Nitschke
    • 1
  • R. Mannhardt
    • 1
  • K. Specht
    • 2
  • B. Gansbacher
    • 3
  • A. B. Imhoff
    • 1
  1. 1.Department of Orthopaedic Sports MedicineTechnical University MunichMünchenGermany
  2. 2.Institute of PathologyTechnical University MunichMünchenGermany
  3. 3.Experimentelle Onkologie und TherapieforschungTechnical University MunichMünchenGermany
  4. 4.Department of Trauma, Hand and Reconstructive SurgeryUniversity Medical Centre Hamburg-EppendorfHamburgGermany

Personalised recommendations