Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 125, Issue 4, pp 254–260 | Cite as

Measurement of meniscofemoral contact pressure after repair of bucket-handle tears with biodegradable implants

  • Roland BeckerEmail author
  • Dieter Wirz
  • Cornelius Wolf
  • Beat Göpfert
  • Wolfgang Nebelung
  • Niklaus Friederich
Original Article

Abstract

Introduction

Biodegradable implants are frequently used for meniscus repair. Articular cartilage damage has been reported recently after meniscus repair with biodegradable implants. The aim of the study was to investigate the meniscofemoral contact pressure at the posterior horn of the medial and lateral meniscus after repair of bucket-handle lacerations.

Materials and methods

Specimens were mounted in a materials testing machine (Bionix 858, MTS) which was equipped with a load cell. The quadriceps tendon was attached to a hydraulic cylinder, and knee motion was controlled via tension of the quadriceps tendon. A piezo-resistive system (Tekscan, Boston, MA, USA) measured the meniscofemoral contact pressure. Five different types of biodegradable implants (Arrow, Dart, Fastener, Stinger and Meniscal Screw) and horizontal suture (no. 2 Ethibond) were tested. The knee was extended from 90° of flexion to 0° under a constant load of 350 N due to adjustment of the tension force of the quadriceps tendon. The femorotibial pressure and contact area were recorded at 0°, 30°, 60° and 90° of flexion.

Results

The meniscofemoral pressure did not increase after meniscus repair with biodegradable implants or sutures. The meniscofemoral peak pressure at the posterior horn was 1.46±1.54 MPa in the medial compartment and 1.08±1.17 MPa in the lateral compartment at full knee extension. The meniscofemoral pressure increased significantly in both compartments with knee flexion from 0° to 90°.

Conclusion

Biodegradable implants for meniscus repair do not affect the meniscofemoral pressure. However, there remains a risk of damage to the cartilage when barbed implants are used. If the implant is not entirely advanced into the meniscus, the sharp head or some of the barbs at the column of the implant may come into direct contact with the articular cartilage of the femoral condyle or tibial plateau. The authors presume that incorrect positioning of the implant seems to be the major reason for cartilage damage.

Keywords

Biodegradable implant Meniscus repair Meniscofemoral pressure 

Notes

Acknowledgement

We received financial support from the Arbeitsgemeinschaft für Arthroskopie (AGA) for this study.

References

  1. 1.
    Aagaard H, Verdonk R (1999) Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports 9:134–140PubMedGoogle Scholar
  2. 2.
    Ahmed AM (1983) A pressure distribution transducer for in-vitro static measurements in synovial joints. J Biomech Eng 105:309–314PubMedGoogle Scholar
  3. 3.
    Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL (2000) Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 18:109–115PubMedGoogle Scholar
  4. 4.
    Anderson K, Marx RG, Hannafin J, Warren RF (2000) Chondral injury following meniscal repair with a biodegradable implant. Arthroscopy 16:749–753PubMedGoogle Scholar
  5. 5.
    Aspden RM, Yarker YE, Hukins DW (1985) Collagen orientations in the meniscus of the knee joint. J Anat 140:371–380PubMedGoogle Scholar
  6. 6.
    Barber FA, Herbert MA (2000) Meniscal repair devices. Arthroscopy 16:613–618CrossRefPubMedGoogle Scholar
  7. 7.
    Bargar WL, Moreland JR, Markolf KL, Shoemaker SC, Amstutz HC, Grant TT (1980) In vivo stability testing of post-meniscectomy knees. Clin Orthop 150:247–252PubMedGoogle Scholar
  8. 8.
    Becker R, Schroder M, Starke C, Urbach D, Nebelung W (2001) Biomechanical investigations of different meniscal repair implants in comparison with horizontal sutures on human meniscus. Arthroscopy 17:439–444CrossRefPubMedGoogle Scholar
  9. 9.
    Becker R, Starke C, Heymann M, Nebelung W (2002) Biomechanical properties under cyclic loading of seven meniscus repair techniques. Clin Orthop 400:236–245PubMedGoogle Scholar
  10. 10.
    Becker R, Voigt D, Starke C, Heymann M, Wilson GA, Nebelung W (2001) Biomechanical properties of quadruple tendon and patellar tendon femoral fixation techniques. Knee Surg Sports Traumatol Arthrosc 9:337–342PubMedGoogle Scholar
  11. 11.
    Favenesi J, Shaffer J, Mow VC (1983) Biphasic mechanical properties of knee meniscus. Orthop Trans 8:174Google Scholar
  12. 12.
    Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF (1987) The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 30:914–918PubMedGoogle Scholar
  13. 13.
    Fithian DC, Kelly MA, Mow VC (1990) Material properties and structure-function relationships in the menisci. Clin Orthop 252:19–31PubMedGoogle Scholar
  14. 14.
    Fukubayashi T, Kurosawa H (1980) The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand 51:871–879PubMedGoogle Scholar
  15. 15.
    Goertzen DJ, Budney DR, Cinats JG (1997) Methodology and apparatus to determine material properties of the knee joint meniscus. Med Eng Phys 19:412–419CrossRefPubMedGoogle Scholar
  16. 16.
    Harris ML, Morberg P, Bruce WJ, Walsh WR (1999) An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J Biomech 32:951–958CrossRefPubMedGoogle Scholar
  17. 17.
    Higuchi H, Kimura M, Shirakura K, Terauchi M, Takagishi K (2000) Factors affecting long-term results after arthroscopic partial meniscectomy. Clin Orthop 377:161–168CrossRefPubMedGoogle Scholar
  18. 18.
    Hsieh HH, Walker PS (1976) Stabilizing mechanisms of the loaded and unloaded knee joint. J Bone Joint Surg Am 58:87–93PubMedGoogle Scholar
  19. 19.
    Kohn D, Mussack T, Plitz W (1993) Material properties of meniscus tissue and the effect of the menisci on the compression behavior of the knee joint. Z Orthop 131:397–403PubMedGoogle Scholar
  20. 20.
    Kohn D, Siebert W (1989) Meniscus suture techniques: a comparative biomechanical cadaver study. Arthroscopy 5:324–327CrossRefPubMedGoogle Scholar
  21. 21.
    Lanzer WL, Komenda G (1990) Changes in articular cartilage after meniscectomy. Clin Orthop 252:41–48PubMedGoogle Scholar
  22. 22.
    Lechner K, Hull ML, Howell SM (2000) Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area? J Orthop Res 18:945–951PubMedGoogle Scholar
  23. 23.
    Levy IM, Torzilli PA, Warren RF (1982) The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 64:883–888PubMedGoogle Scholar
  24. 24.
    Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193:161–178CrossRefPubMedGoogle Scholar
  25. 25.
    Morgan CD (1991) The ‘all-inside’ meniscus repair. Arthroscopy 7:120–125CrossRefPubMedGoogle Scholar
  26. 26.
    Mow V, Ratcliffe A, Chern K, Kelly M (1992) Structure and function relationships of the menisci of the knee. In: Mow V, Arnoczky SP, Jackson DW (eds) Knee meniscus: basic and clinical foundations. Raven Press, New York, pp 37–53Google Scholar
  27. 27.
    Neyret P, Donell ST, DeJour D, DeJour H (1993) Partial meniscectomy and anterior cruciate ligament rupture in soccer players. A study with a minimum 20-year followup. Am J Sports Med 21:455–460PubMedGoogle Scholar
  28. 28.
    Paletta GAJ, Manning T, Snell E, Parker R, Bergfeld J (1997) The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. A biomechanical study. Am J Sports Med 25:692–698PubMedGoogle Scholar
  29. 29.
    Petersen W, Tillmann B (1999) Structure and vascularization of the knee joint menisci. Z Orthop 137:31–37PubMedGoogle Scholar
  30. 30.
    Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC (1989) Material properties of the normal medial bovine meniscus. J Orthop Res 7:771–782PubMedGoogle Scholar
  31. 31.
    Rockborn P, Gillquist J (1996) Long-term results after arthroscopic meniscectomy. The role of preexisting cartilage fibrillation in a 13 year follow-up of 60 patients. Int J Sports Med 17:608–613PubMedGoogle Scholar
  32. 32.
    Ross G, Grabill J, McDevitt E (2000) Chondral injury after meniscal repair with bioabsorbable arrows. Arthroscopy 16:754–756PubMedGoogle Scholar
  33. 33.
    Schatzmann L, Brunner P, Staubli HU (1998) Effect of cyclic preconditioning on the tensile properties of human quadriceps tendons and patellar ligaments. Knee Surg Sports Traumatol Arthrosc 6 [Suppl 1]:S56–61Google Scholar
  34. 34.
    Seil R, Rupp S, Mai C, Kohn D (2001) The footprint of meniscus fixation devices on the femoral surface of the medial meniscus: a biomechanical cadaver study. 3rd ISAKOS Congress, Montreaux, Switzerland, May 14–18, poster no. 400Google Scholar
  35. 35.
    Seil R, Rupp S, Dienst M, Mueller B, Bonkhoff H, Kohn DM (2000) Chondral lesions after arthroscopic meniscus repair using meniscus arrows. Arthroscopy 16:E17PubMedGoogle Scholar
  36. 36.
    Shoemaker SC, Markolf KL (1982) In vivo rotatory knee stability. Ligamentous and muscular contributions. J Bone Joint Surg Am 64:208–216PubMedGoogle Scholar
  37. 37.
    Skaggs DL, Warden WH, Mow VC (1994) Radial tie fibers influence the tensile properties of the bovine medial meniscus. J Orthop Res 12:176–185PubMedGoogle Scholar
  38. 38.
    Spilker RL, Donzelli PS, Mow VC (1992) A transversely isotropic biphasic finite element model of the meniscus. J Biomech 25:1027–1045PubMedGoogle Scholar
  39. 39.
    Tekscan (2001) Tekscan product information—medical product overview. Tekscan, BostonGoogle Scholar
  40. 40.
    Tissakht M, Ahmed AM (1995) Tensile stress-strain characteristics of the human meniscal material. J Biomech 28:411–422CrossRefPubMedGoogle Scholar
  41. 41.
    Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop 109:184–192PubMedGoogle Scholar
  42. 42.
    Wirz D, Becker R, Li SF, Friederich NF, Muller W (2002) Validation of the Tekscan system for statistic and dynamic pressure measurements of the human femorotibial joint. Biomed Tech (Berl) 47:195–201Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Roland Becker
    • 1
    Email author
  • Dieter Wirz
    • 2
  • Cornelius Wolf
    • 3
  • Beat Göpfert
    • 2
  • Wolfgang Nebelung
    • 4
  • Niklaus Friederich
    • 5
  1. 1.Department of Orthopaedic SurgeryOtto von Guericke UniversityMagdeburgGermany
  2. 2.Laboratory of Orthopaedic BiomechanicsUniversity of BaselBaselSwitzerland
  3. 3.Department of Orthopaedic SurgeryDistrict HospitalMühlhausenGermany
  4. 4.Department of Orthopaedic SurgeryMarien HospitalDüsseldorfGermany
  5. 5.Department of Orthopaedic SurgeryKantonsspitalBruderholzSwitzerland

Personalised recommendations