Advertisement

Proteomics in cerebrospinal fluid and spinal cord suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic lateral sclerosis

  • Patrick Oeckl
  • Patrick Weydt
  • Dietmar R. Thal
  • Jochen H. Weishaupt
  • Albert C. Ludolph
  • Markus OttoEmail author
Original Paper

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease and the proteins and pathways involved in the pathophysiology are not fully understood. Even less is known about the preclinical disease phase. To uncover new ALS-related proteins and pathways, we performed a comparative proteomic analysis in cerebrospinal fluid (CSF) of asymptomatic (n = 14) and symptomatic (n = 14) ALS mutation carriers and sporadic ALS patients (n = 12) as well as post-mortem human spinal cord tissue (controls: n = 7, ALS, n = 8). Using a CSF-optimized proteomic workflow, we identified novel (e.g., UCHL1, MAP2, CAPG, GPNMB, HIST1H4A, HIST1H2B) and well-described (e.g., NEFL, NEFH, NEFM, CHIT1, CHI3L1) protein level changes in CSF of sporadic and genetic ALS patients with enrichment of proteins related to transcription, cell cycle and lipoprotein remodeling (total protein IDs: 2303). No significant alteration was observed in asymptomatic ALS mutation carriers representing the prodromal disease phase. We confirmed UCHL1, MAP2, CAPG and GPNMB as novel biomarker candidates for ALS in an independent validation cohort of patients (n = 117) using multiple reaction monitoring. In spinal cord tissue, 292 out of 6810 identified proteins were significantly changed in ALS with enrichment of proteins involved in mRNA splicing and of the neurofilament compartment. In conclusion, our proteomic data in asymptomatic ALS mutation carriers support the hypothesis of a sudden disease onset instead of a long preclinical phase. Both CSF and tissue proteomic data indicate transcriptional pathways to be amongst the most affected. UCHL1, MAP2 and GPNMB are promising ALS biomarker candidates which might provide additional value to the established neurofilaments in patient follow-up and clinical trials.

Keywords

Amyotrophic lateral sclerosis Biomarker Cerebrospinal fluid Proteomics Multiple reaction monitoring UCHL1 

Notes

Acknowledgements

We are grateful to all the patients who participated in this study. We thank Stephen Meier for his excellent technical assistance. QPrESTs for MRM analysis were partly provided by Atlas Antibodies AB (Bromma, Sweden).

Author contributions

Conception and design: PO, MO. Data acquisition, analysis and interpretation: PO, PW, DRT, JHW, ACL, MO. All authors substantially revised the manuscript.

Funding

This study was supported by the EU Joint Programme-Neurodegenerative Diseases networks SOPHIA (01ED1202A), BiomarkAPD (01ED1203F) and PreFrontAls (01ED1512), the German Federal Ministry of Education and Research (FTLDc 01GI1007A, MND-Net 01GM1103A), the EU (NADINE 246513, FAIR-PARK II 633190), the German Research Foundation/DFG (SFB1279), the foundation of the state Baden-Württemberg (D.3830), Boehringer Ingelheim Ulm University BioCenter (D.5009) and the Thierry Latran Foundation. DRT receives grants from Fonds Wetenschappelijk Onderzoek (FWO) G0F8516 N, and C1-internal funds from KU Leuven (C14-17-107). The funding sources were not involved in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

PO, PW, JHW, ACL and MO report no conflict of interest. DRT received consultant honorary from GE-Healthcare (UK), and Covance Laboratories (UK), speaker honorary from Novartis Pharma AG (Switzerland), travel reimbursement from GE-Healthcare (UK) and UCB (Belgium) and collaborated with Novartis Pharma AG (Switzerland), Probiodrug (Germany), GE-Healthcare (UK), and Janssen Pharmaceutical Companies (Belgium).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Ethics Committee of Ulm) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Supplementary material

401_2019_2093_MOESM1_ESM.pdf (93 kb)
Supplementary material 1 (PDF 93 kb)
401_2019_2093_MOESM2_ESM.xlsx (727 kb)
Supplementary material 2 (XLSX 726 kb)
401_2019_2093_MOESM3_ESM.xlsx (15 kb)
Supplementary material 3 (XLSX 14 kb)
401_2019_2093_MOESM4_ESM.xlsx (1.3 mb)
Supplementary material 4 (XLSX 1352 kb)
401_2019_2093_MOESM5_ESM.xlsx (36 kb)
Supplementary material 5 (XLSX 35 kb)
401_2019_2093_MOESM6_ESM.xlsx (95 kb)
Supplementary material 6 (XLSX 94 kb)
401_2019_2093_MOESM7_ESM.xlsx (26 kb)
Supplementary material 7 (XLSX 25 kb)

References

  1. 1.
    Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:162–172.  https://doi.org/10.1056/NEJMra1603471 CrossRefPubMedGoogle Scholar
  2. 2.
    Petrov D, Mansfield C, Moussy A, Hermine O (2017) ALS clinical trials review: 20 years of failure Are we any closer to registering a new treatment. Front Aging Neurosci 9:68.  https://doi.org/10.3389/fnagi.2017.00068 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W et al (2015) A revision of the El Escorial criteria—2015. Amyotroph Lateral Scler Frontotemporal Degener 16:291–292.  https://doi.org/10.3109/21678421.2015.1049183 CrossRefPubMedGoogle Scholar
  4. 4.
    Lu C-H, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N et al (2015) Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84:2247–2257CrossRefGoogle Scholar
  5. 5.
    Weydt P, Oeckl P, Huss A, Müller K, Volk AE, Kuhle J et al (2016) Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol 79:152–158.  https://doi.org/10.1002/ana.24552 CrossRefPubMedGoogle Scholar
  6. 6.
    Varghese AM, Sharma A, Mishra P, Vijayalakshmi K, Harsha HC, Sathyaprabha TN et al (2013) Chitotriosidase—a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin Proteom 10:19.  https://doi.org/10.1186/1559-0275-10-19 CrossRefGoogle Scholar
  7. 7.
    Chen X, Chen Y, Wei Q, Ou R, Cao B, Zhao B et al (2016) Assessment of a multiple biomarker panel for diagnosis of amyotrophic lateral sclerosis. BMC Neurol 16:173.  https://doi.org/10.1186/s12883-016-0689-x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Oeckl P, Weydt P, Steinacker P, Anderl-Straub S, Nordin F, Volk AE et al (2019) Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. J Neurol Neurosurg Psychiatry 90:4–10.  https://doi.org/10.1136/jnnp-2018-318868 CrossRefPubMedGoogle Scholar
  9. 9.
    Steinacker P, Verde F, Fang L, Feneberg E, Oeckl P, Roeber S et al (2018) Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J Neurol Neurosurg Psychiatry 89:239–247CrossRefGoogle Scholar
  10. 10.
    Thompson AG, Gray E, Thézénas M-L, Charles PD, Evetts S, Hu MT et al (2018) Cerebrospinal fluid macrophage biomarkers in amyotrophic lateral sclerosis. Ann Neurol 83:258–268.  https://doi.org/10.1002/ana.25143 CrossRefPubMedGoogle Scholar
  11. 11.
    Benatar M, Wuu J, Andersen PM, Lombardi V, Malaspina A (2018) Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann Neurol 84:130–139.  https://doi.org/10.1002/ana.25276 CrossRefPubMedGoogle Scholar
  12. 12.
    Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299CrossRefGoogle Scholar
  13. 13.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372.  https://doi.org/10.1038/nbt.1511 CrossRefGoogle Scholar
  14. 14.
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740.  https://doi.org/10.1038/nmeth.3901 CrossRefPubMedGoogle Scholar
  15. 15.
    Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteom 13:2513–2526.  https://doi.org/10.1074/mcp.M113.031591 CrossRefGoogle Scholar
  16. 16.
    MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968CrossRefGoogle Scholar
  17. 17.
    Oeckl P, Metzger F, Nagl M, von Arnim CAF, Halbgebauer S, Steinacker P et al (2016) Alpha-, Beta-, and gamma-synuclein quantification in cerebrospinal fluid by multiple reaction monitoring reveals increased concentrations in Alzheimer′s and Creutzfeldt-Jakob disease but no alteration in synucleinopathies. Mol Cell Proteom 15:3126–3138.  https://doi.org/10.1074/mcp.M116.059915 CrossRefGoogle Scholar
  18. 18.
    Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D et al (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726PubMedPubMedCentralGoogle Scholar
  19. 19.
    Steinacker P, Feneberg E, Weishaupt J, Brettschneider J, Tumani H, Andersen PM et al (2016) Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry 87:12–20PubMedGoogle Scholar
  20. 20.
    Oeckl P, Jardel C, Salachas F, Lamari F, Andersen PM, Bowser R et al (2016) Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener 17:404–413CrossRefGoogle Scholar
  21. 21.
    Macron C, Lane L, Núñez Galindo A, Dayon L (2018) Deep dive on the proteome of human cerebrospinal fluid: a valuable data resource for biomarker discovery and missing protein identification. J Proteome Res 17:4113–4126.  https://doi.org/10.1021/acs.jproteome.8b00300 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang Y, Guo Z, Zou L, Yang Y, Zhang L, Ji N et al (2015) A comprehensive map and functional annotation of the normal human cerebrospinal fluid proteome. J Proteom 119:90–99.  https://doi.org/10.1016/j.jprot.2015.01.017 CrossRefGoogle Scholar
  23. 23.
    Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452.  https://doi.org/10.1038/26652 CrossRefPubMedGoogle Scholar
  24. 24.
    Bishop P, Rocca D, Henley JM (2016) Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 473:2453–2462.  https://doi.org/10.1042/BCJ20160082 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Genç B, Jara JH, Schultz MC, Manuel M, Stanford MJ, Gautam M et al (2016) Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol 3:331–345.  https://doi.org/10.1002/acn3.298 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jara JH, Genç B, Cox GA, Bohn MC, Roos RP, Macklis JD et al (2015) Corticospinal motor neurons are susceptible to increased ER stress and display profound degeneration in the absence of UCHL1 function. Cereb Cortex 25:4259–4272.  https://doi.org/10.1093/cercor/bhu318 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Patel R, Brophy C, Hickling M, Neve J, Furger A (2019) Alternative cleavage and polyadenylation of genes associated with protein turnover and mitochondrial function are deregulated in Parkinson’s, Alzheimer’s and ALS disease. BMC Med Genom 12:60.  https://doi.org/10.1186/s12920-019-0509-4 CrossRefGoogle Scholar
  28. 28.
    Lederer CW, Torrisi A, Pantelidou M, Santama N, Cavallaro S (2007) Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genom 8:26.  https://doi.org/10.1186/1471-2164-8-26 CrossRefGoogle Scholar
  29. 29.
    Dehmelt L, Halpain S (2004) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6:204.  https://doi.org/10.1186/gb-2004-6-1-204 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Xia D, Gutmann JM, Götz J (2016) Mobility and subcellular localization of endogenous, gene-edited Tau differs from that of over-expressed human wild-type and P301L mutant Tau. Sci Rep 6:29074.  https://doi.org/10.1038/srep29074 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grossman M, Elman L, McCluskey L, McMillan CT, Boller A, Powers J et al (2014) Phosphorylated tau as a candidate biomarker for amyotrophic lateral sclerosis. JAMA Neurol 71:442.  https://doi.org/10.1001/jamaneurol.2013.6064 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kikuchi H, Doh-ura K, Kawashima T, Kira J, Iwaki T (1999) Immunohistochemical analysis of spinal cord lesions in amyotrophic lateral sclerosis using microtubule-associated protein 2 (MAP2) antibodies. Acta Neuropathol 97:13–21CrossRefGoogle Scholar
  33. 33.
    van der Lienden M, Gaspar P, Boot R, Aerts J, van Eijk M (2018) Glycoprotein non-metastatic protein B: an emerging biomarker for lysosomal dysfunction in macrophages. Int J Mol Sci 20:66.  https://doi.org/10.3390/ijms20010066 CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Witke W, Li W, Kwiatkowski DJ, Southwick FS (2001) Comparisons of CapG and gelsolin-null macrophages. J Cell Biol 154:775–784.  https://doi.org/10.1083/jcb.200101113 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tanaka H, Shimazawa M, Kimura M, Takata M, Tsuruma K, Yamada M et al (2012) The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral sclerosis. Sci Rep 2:573.  https://doi.org/10.1038/srep00573 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hüttenrauch M, Ogorek I, Klafki H, Otto M, Stadelmann C, Weggen S et al (2018) Glycoprotein NMB: a novel Alzheimer’s disease associated marker expressed in a subset of activated microglia. Acta Neuropathol Commun 6:108.  https://doi.org/10.1186/s40478-018-0612-3 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Moloney EB, Moskites A, Ferrari EJ, Isacson O, Hallett PJ (2018) The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson’s disease patients and increases after lysosomal stress. Neurobiol Dis 120:1–11.  https://doi.org/10.1016/j.nbd.2018.08.013 CrossRefPubMedGoogle Scholar
  38. 38.
    Neal ML, Boyle AM, Budge KM, Safadi FF, Richardson JR (2018) The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor. J Neuroinflamm 15:73.  https://doi.org/10.1186/s12974-018-1100-1 CrossRefGoogle Scholar
  39. 39.
    Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K et al (2017) GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res 95:1647–1665.  https://doi.org/10.1002/jnr.23999 CrossRefPubMedGoogle Scholar
  40. 40.
    Nagahara Y, Shimazawa M, Tanaka H, Ono Y, Noda Y, Ohuchi K et al (2015) Glycoprotein nonmetastatic melanoma protein B ameliorates skeletal muscle lesions in a SOD1 G93A mouse model of amyotrophic lateral sclerosis. J Neurosci Res 93:1552–1566.  https://doi.org/10.1002/jnr.23619 CrossRefPubMedGoogle Scholar
  41. 41.
    Timmons JA, Szkop KJ, Gallagher IJ (2015) Multiple sources of bias confound functional enrichment analysis of globalomics data. Genome Biol 16:186.  https://doi.org/10.1186/s13059-015-0761-7 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Highley JR, Kirby J, Jansweijer JA, Webb PS, Hewamadduma CA, Heath PR et al (2014) Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Neuropathol Appl Neurobiol 40:670–685.  https://doi.org/10.1111/nan.12148 CrossRefPubMedGoogle Scholar
  43. 43.
    Gao J, Wang L, Huntley ML, Perry G, Wang X (2018) Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem 146:7–20.  https://doi.org/10.1111/jnc.14327 CrossRefGoogle Scholar
  44. 44.
    Donde A, Sun M, Ling JP, Braunstein KE, Pang B, Wen X et al (2019) Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathol 138:813–826.  https://doi.org/10.1007/s00401-019-02042-8 CrossRefPubMedGoogle Scholar
  45. 45.
    Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, Mordes DA et al (2019) ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci 22:167–179.  https://doi.org/10.1038/s41593-018-0300-4 CrossRefGoogle Scholar
  46. 46.
    Conlon EG, Fagegaltier D, Agius P, Davis-Porada J, Gregory J, Hubbard I et al (2018) Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism. Elife 7:e37754.  https://doi.org/10.7554/eLife.37754 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gitler AD, Fryer JD (2018) A matter of balance. Elife 7:e40034.  https://doi.org/10.7554/eLife.40034 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yin S, Lopez-Gonzalez R, Kunz RC, Gangopadhyay J, Borufka C, Gygi SP et al (2017) Evidence that C9ORF72 dipeptide repeat proteins associate with U2 snRNP to cause mis-splicing in ALS/FTD patients. Cell Rep 19:2244–2256.  https://doi.org/10.1016/j.celrep.2017.05.056 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Neves LT, Douglass S, Spreafico R, Venkataramanan S, Kress TL, Johnson TL (2017) The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae. Genes Dev 31:702–717.  https://doi.org/10.1101/gad.295188.116 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lin P, Li F, Zhang Y, Huang H, Tong G, Farquhar MG, Xu H (2006) Calnuc binds to Alzheimer’s beta-amyloid precursor protein and affects its biogenesis. J Neurochem 100:1505–1514.  https://doi.org/10.1111/j.1471-4159.2006.04336.x CrossRefGoogle Scholar
  51. 51.
    Kühne S, Schalla M, Friedrich T, Kobelt P, Goebel-Stengel M, Long M et al (2018) Nesfatin-130-59 injected intracerebroventricularly increases anxiety, depression-like behavior, and anhedonia in normal weight rats. Nutrients 10:1889.  https://doi.org/10.3390/nu10121889 CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Berger ML, Veitl M, Malessa S, Sluga E, Hornykiewicz O (1992) Cholinergic markers in ALS spinal cord. J Neurol Sci 108:114–117CrossRefGoogle Scholar
  53. 53.
    Campanari M-L, García-Ayllón M-S, Ciura S, Sáez-Valero J, Kabashi E (2016) Neuromuscular junction impairment in amyotrophic lateral sclerosis: reassessing the role of acetylcholinesterase. Front Mol Neurosci 9:160.  https://doi.org/10.3389/fnmol.2016.00160 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kawajiri M, Mogi M, Higaki N, Tateishi T, Ohyagi Y, Horiuchi M et al (2009) Reduced angiotensin II levels in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neurol Scand 119:341–344.  https://doi.org/10.1111/j.1600-0404.2008.01099.x CrossRefPubMedGoogle Scholar
  55. 55.
    Lin F-C, Tsai C-P, Kuang-Wu Lee J, Wu M-T, Tzu-Chi Lee C (2015) Angiotensin-Converting Enzyme Inhibitors and Amyotrophic Lateral Sclerosis Risk. JAMA Neurol 72:40.  https://doi.org/10.1001/jamaneurol.2014.3367 CrossRefPubMedGoogle Scholar
  56. 56.
    Pagnamenta AT, Khan H, Walker S, Gerrelli D, Wing K, Bonaglia MC et al (2011) Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. J Med Genet 48:48–54.  https://doi.org/10.1136/jmg.2010.079426 CrossRefPubMedGoogle Scholar
  57. 57.
    Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM et al (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140:2860–2878.  https://doi.org/10.1093/brain/awx251 CrossRefPubMedGoogle Scholar
  58. 58.
    Butler M, Rafi S, Hossain W, Stephan D, Manzardo A (2015) Whole exome sequencing in females with autism implicates novel and candidate genes. Int J Mol Sci 16:1312–1335.  https://doi.org/10.3390/ijms16011312 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bereman MS, Beri J, Enders JR, Nash T (2018) Machine learning reveals protein signatures in CSF and plasma fluids of clinical value for ALS. Sci Rep 8:16334.  https://doi.org/10.1038/s41598-018-34642-x CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Werner CJ, Heyny-von Haussen R, Mall G, Wolf S (2008) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci 6:8.  https://doi.org/10.1186/1477-5956-6-8 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cox LE, Ferraiuolo L, Goodall EF, Heath PR, Higginbottom A, Mortiboys H et al (2010) Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One 5:e9872.  https://doi.org/10.1371/journal.pone.0009872 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Garbuzova-Davis S, Woods RL, Louis MK, Zesiewicz TA, Kuzmin-Nichols N, Sullivan KL et al (2010) Reduction of circulating endothelial cells in peripheral blood of ALS patients. PLoS One 5:e10614.  https://doi.org/10.1371/journal.pone.0010614 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Larochelle C, Lécuyer M-A, Alvarez JI, Charabati M, Saint-Laurent O, Ghannam S et al (2015) Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation. Ann Neurol 78:39–53.  https://doi.org/10.1002/ana.24415 CrossRefPubMedGoogle Scholar
  64. 64.
    Figueroa-Romero C, Hur J, Bender DE, Delaney CE, Cataldo MD, Smith AL et al (2012) Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS ONE 7:e52672.  https://doi.org/10.1371/journal.pone.0052672 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Foveau B, Correia AS, Hébert SS, Rainone S, Potvin O, Kergoat M-J et al (2019) Stem cell-derived neurons as cellular models of sporadic Alzheimer’s disease. J Alzheimer’s Dis 67:893–910.  https://doi.org/10.3233/jad-180833 CrossRefGoogle Scholar
  66. 66.
    Gaikwad S, Larionov S, Wang Y, Dannenberg H, Matozaki T, Monsonego A et al (2009) Signal regulatory protein-β1. Am J Pathol 175:2528–2539.  https://doi.org/10.2353/ajpath.2009.090147 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lilo E, Wald-Altman S, Solmesky LJ, Ben Yaakov K, Gershoni-Emek N, Bulvik S et al (2013) Characterization of human sporadic ALS biomarkers in the familial ALS transgenic mSOD1G93A mouse model. Hum Mol Genet 22:4720–4725.  https://doi.org/10.1093/hmg/ddt325 CrossRefPubMedGoogle Scholar
  68. 68.
    Ghidoni R, Flocco R, Paterlini A, Glionna M, Caruana L, Tonoli E et al (2014) Secretory leukocyte protease inhibitor protein regulates the penetrance of frontotemporal lobar degeneration in progranulin mutation carriers. J Alzheimers Dis 38:533–539.  https://doi.org/10.3233/JAD-131163 CrossRefPubMedGoogle Scholar
  69. 69.
    Atkin G, Paulson H (2014) Ubiquitin pathways in neurodegenerative disease. Front Mol Neurosci 7:63.  https://doi.org/10.3389/fnmol.2014.00063 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurologyUlm University HospitalUlmGermany
  2. 2.Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity of BonnBonnGermany
  3. 3.Laboratory of Neuropathology, Institute of PathologyUlm UniversityUlmGermany
  4. 4.Department of Imaging and Pathology, KU Leuven and Department of PathologyUZ LeuvenLouvainBelgium

Personalised recommendations